Durrmeyer, J L, Une formule d’inversion de la transformee de Laplace: Applications a la theorie des moments, These de 3e cycle, Faculte des Sciences de l’Universite de Paris, 1967.
Derriennic, M. M., Surl approximation de fonctions integrables sur [0; 1] par des polynomes de Bernstein modi…es, J. Approx. Theory, 32 (1981) 325–343.
Lupas, A., A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on numerical and statistical calculus, 9 (1987), 85-92, Calculus (Cluj-Napoca, 1987), Preprint, 9 Univ. Babes-Bolyai, Cluj. MR0956939 (90b:41026).
Gupta, V., Some approximation properties of q-Durrmeyer operators, Appl. Math. Comp., , 191(1), (2008) 172-178.
Zeng, X. M., Lin, D. and Li, L., A note on approximation properties of q-Durrmeyer operators, Appl. Math. Comp., 216(3) (2010) 819–821.
Mishra, V. N. and Patel, P., A short note on approximation properties of Stancu generaliza- tion of q-Durrmeyer operators, Fixed Point Th. Appl., 84(1) (2013) 5 pages.
Mishra, V. N. and Patel, P., On generalized integral Bernstein operators based on q-integers, Appl. Math. Comp., 242 (2014) 931-944.
Gupta, V. and Sharma, H. Recurrence formula and better approximation for q-Durrmeyer operators, Lobachevskii J. Math., 32(2) (2011) 140–145.
De Sole, A.and Kac, V., On integral representations of q-gamma and q-beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, (9) Mat. Appl., 16(1) (2005) 29.
Stancu, D. D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 13(8) (1968) 1173-1194.
Mohapatra R.N. and Walczak, Z., Remarks on a class of Szász-Mirakyan type operators, East J. Approx. 15(2) (2009) 197-206.
Içöz, G.and Mohapatra, R. N., Approximation properties by q-Durrmeyer-Stancu operators. Anal. Theory Appl. 29(4) (2013) 373–383.
Mishra, V. N. and Patel, P., Approximation by the Durrmeyer-Baskakov-Stancu operators, Lobachevskii J. Math., 34(3) (2013) 272–281.
Mishra V. N. and Patel, P., The Durrmeyer type modi…cation of the q-Baskakov type oper- ators with two parameter and , Numerical Algorithms, 67(4) (2014) 753-769.
Yurdakadim, T., Some Korovkin type results via power series method in modular spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 65(2) (2016) 65-76.
Karaisa, A. and Aral, A., Some approximation properties of Kontorovich variant of Chlodowsky operators based on q-integers, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 65(2) (2016) 97-119.
Içöz, G. and Mohapatra, R. N., Weighted approximation properties of Stancu type modi…ca- tion of q-Szász-Durrmeyer operators, Commun. Ser. A1 Math. Stat, 65(1) (2016) 87-103.
Içöz, G. and Bayram, C., q-analogue of Mittag-Le- er operators, Miskolc Mathematical Notes (1), (2017), 211-221.
Mishra, V. N., Khatri, K., Mishra, L.N. and Deemmala, Inverse result in simultaneous approx- imation by Baskakov-Durrmeyer-Stancu operators, Journal of Inequalities and Applications, , (2013) 586. doi:10.1186/1029-242X-2013-586.
Mishra, V. N., K Khatri, and Mishra, L. N., Statistical approximation by Kantorovich- typediscrete q-Betaoperators, doi:10.1186/1687-1847-2013-345.
Advances inDiğ erence Equations, (1) (2013)
THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR q-DERIVATIVE OF INTEGRAL GENERALIZATION OF q-BERNSTEIN OPERATORS
Year 2018,
Volume: 67 Issue: 2, 298 - 305, 01.08.2018
Durrmeyer, J L, Une formule d’inversion de la transformee de Laplace: Applications a la theorie des moments, These de 3e cycle, Faculte des Sciences de l’Universite de Paris, 1967.
Derriennic, M. M., Surl approximation de fonctions integrables sur [0; 1] par des polynomes de Bernstein modi…es, J. Approx. Theory, 32 (1981) 325–343.
Lupas, A., A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on numerical and statistical calculus, 9 (1987), 85-92, Calculus (Cluj-Napoca, 1987), Preprint, 9 Univ. Babes-Bolyai, Cluj. MR0956939 (90b:41026).
Gupta, V., Some approximation properties of q-Durrmeyer operators, Appl. Math. Comp., , 191(1), (2008) 172-178.
Zeng, X. M., Lin, D. and Li, L., A note on approximation properties of q-Durrmeyer operators, Appl. Math. Comp., 216(3) (2010) 819–821.
Mishra, V. N. and Patel, P., A short note on approximation properties of Stancu generaliza- tion of q-Durrmeyer operators, Fixed Point Th. Appl., 84(1) (2013) 5 pages.
Mishra, V. N. and Patel, P., On generalized integral Bernstein operators based on q-integers, Appl. Math. Comp., 242 (2014) 931-944.
Gupta, V. and Sharma, H. Recurrence formula and better approximation for q-Durrmeyer operators, Lobachevskii J. Math., 32(2) (2011) 140–145.
De Sole, A.and Kac, V., On integral representations of q-gamma and q-beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, (9) Mat. Appl., 16(1) (2005) 29.
Stancu, D. D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 13(8) (1968) 1173-1194.
Mohapatra R.N. and Walczak, Z., Remarks on a class of Szász-Mirakyan type operators, East J. Approx. 15(2) (2009) 197-206.
Içöz, G.and Mohapatra, R. N., Approximation properties by q-Durrmeyer-Stancu operators. Anal. Theory Appl. 29(4) (2013) 373–383.
Mishra, V. N. and Patel, P., Approximation by the Durrmeyer-Baskakov-Stancu operators, Lobachevskii J. Math., 34(3) (2013) 272–281.
Mishra V. N. and Patel, P., The Durrmeyer type modi…cation of the q-Baskakov type oper- ators with two parameter and , Numerical Algorithms, 67(4) (2014) 753-769.
Yurdakadim, T., Some Korovkin type results via power series method in modular spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 65(2) (2016) 65-76.
Karaisa, A. and Aral, A., Some approximation properties of Kontorovich variant of Chlodowsky operators based on q-integers, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 65(2) (2016) 97-119.
Içöz, G. and Mohapatra, R. N., Weighted approximation properties of Stancu type modi…ca- tion of q-Szász-Durrmeyer operators, Commun. Ser. A1 Math. Stat, 65(1) (2016) 87-103.
Içöz, G. and Bayram, C., q-analogue of Mittag-Le- er operators, Miskolc Mathematical Notes (1), (2017), 211-221.
Mishra, V. N., Khatri, K., Mishra, L.N. and Deemmala, Inverse result in simultaneous approx- imation by Baskakov-Durrmeyer-Stancu operators, Journal of Inequalities and Applications, , (2013) 586. doi:10.1186/1029-242X-2013-586.
Mishra, V. N., K Khatri, and Mishra, L. N., Statistical approximation by Kantorovich- typediscrete q-Betaoperators, doi:10.1186/1687-1847-2013-345.
Mıshra, V. N., & Patel, P. (2018). THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR q-DERIVATIVE OF INTEGRAL GENERALIZATION OF q-BERNSTEIN OPERATORS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(2), 298-305.
AMA
Mıshra VN, Patel P. THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR q-DERIVATIVE OF INTEGRAL GENERALIZATION OF q-BERNSTEIN OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2018;67(2):298-305.
Chicago
Mıshra, Vishnu Narayan, and Prashantkumar Patel. “THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR Q-DERIVATIVE OF INTEGRAL GENERALIZATION OF Q-BERNSTEIN OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 2 (August 2018): 298-305.
EndNote
Mıshra VN, Patel P (August 1, 2018) THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR q-DERIVATIVE OF INTEGRAL GENERALIZATION OF q-BERNSTEIN OPERATORS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 2 298–305.
IEEE
V. N. Mıshra and P. Patel, “THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR q-DERIVATIVE OF INTEGRAL GENERALIZATION OF q-BERNSTEIN OPERATORS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 2, pp. 298–305, 2018.
ISNAD
Mıshra, Vishnu Narayan - Patel, Prashantkumar. “THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR Q-DERIVATIVE OF INTEGRAL GENERALIZATION OF Q-BERNSTEIN OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/2 (August 2018), 298-305.
JAMA
Mıshra VN, Patel P. THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR q-DERIVATIVE OF INTEGRAL GENERALIZATION OF q-BERNSTEIN OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:298–305.
MLA
Mıshra, Vishnu Narayan and Prashantkumar Patel. “THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR Q-DERIVATIVE OF INTEGRAL GENERALIZATION OF Q-BERNSTEIN OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 2, 2018, pp. 298-05.
Vancouver
Mıshra VN, Patel P. THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR q-DERIVATIVE OF INTEGRAL GENERALIZATION OF q-BERNSTEIN OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(2):298-305.