Research Article
BibTex RIS Cite

Henneberg's algebraic surfaces in Minkowski 3-space

Year 2019, Volume: 68 Issue: 2, 1761 - 1773, 01.08.2019
https://doi.org/10.31801/cfsuasmas.444554

Abstract

Bu çalışmada, üç boyutlu Minkowski uzayında Henneberg minimal yüzeyi ele alınmış olup yüzeyin derece, sınıf ve integralden bağımsız gösterinleri verilniştir.

References

  • Fomenko A.T., Tuzhilin A.A., Elements of the Geometry and Topology of Minimal Surfaces in Three-Dimensional Space, Translated from the Russian by E.J.F. Primrose. Translations of Mathematical Monographs, 93. American Math. Soc., Providence, RI, 1991.
  • Fujimori S., Saji K., Umehara M., Yamada K., Singularities of maximal surfaces, Math. Z. 259 (2008) 827--848.
  • Gray A., Salamon S., Abbena E., Modern Differential Geometry of Curves and Surfaces with Mathematica, Third ed. Chapman & Hall/CRC Press, Boca Raton, 2006.
  • Henneberg L., Über salche minimalfläche, welche eine vorgeschriebene ebene curve sur geodätishen line haben. Doctoral Dissertation, Eidgenössisches Polythechikum, Zürich, 1875.
  • Henneberg L., Über diejenige minimalfläche, welche die Neil'sche Paralee zur ebenen geodätischen line hat, Vierteljschr Natuforsch, Ges. Zürich, 21 (1876) 66--70.
  • Henneberg L., Bestimmung der neidrigsten Classenzahl der algebraischen Minimalflächen. Annali di Matem. Pura Appl. 9 (1878) 54--57.
  • Inoguchi J., Lee S., Null curves in Minkowski 3-space, Int. Electron. J. Geom., 1, No. 2 (2008) 40--83.
  • Kobayashi O., Maximal surfaces in the 3-dimensional Minkowski space L³, Tokyo J. Math. 6, No. 2 (1983) 297--309.
  • Magid M., Timelike surfaces in Lorentz 3-space with prescribed mean curvature and Gauss map, Hokkaido Math. J. 20, No. 3 (1991) 447-464.
  • Nitsche J.C.C., Lectures on Minimal Surfaces. Vol. 1. Introduction, Fundamentals, Geometry and Basic Boundary Value Problems, Cambridge Un. Press, Cambridge, 1989.
  • Spivak M., A Comprehensive Introduction to Differential Geometry, Vol. IV. Third edition. Publish or Perish, Inc., Houston, Texas, 1999.
  • Umehara M., Yamada K., Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J. 35, 1 (2006) 13--40.
  • Weierstrass K., Untersuchungen über die Flächen, deren mittlere Krümmung überall gleich Null ist, Monatsber. d. Berliner Akad. (1866) 612--625.
  • Weierstrass K., Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen, Sitzungsberichte der Akademie zu Berlin (An expanded version of this paper with ten additional pages appeared in Weierstrass, Mathematische Werke, Mayer and Müller, Berlin, Vol. 3, (1903), 1--37), (1885), 633--639 and 789--805.
Year 2019, Volume: 68 Issue: 2, 1761 - 1773, 01.08.2019
https://doi.org/10.31801/cfsuasmas.444554

Abstract

References

  • Fomenko A.T., Tuzhilin A.A., Elements of the Geometry and Topology of Minimal Surfaces in Three-Dimensional Space, Translated from the Russian by E.J.F. Primrose. Translations of Mathematical Monographs, 93. American Math. Soc., Providence, RI, 1991.
  • Fujimori S., Saji K., Umehara M., Yamada K., Singularities of maximal surfaces, Math. Z. 259 (2008) 827--848.
  • Gray A., Salamon S., Abbena E., Modern Differential Geometry of Curves and Surfaces with Mathematica, Third ed. Chapman & Hall/CRC Press, Boca Raton, 2006.
  • Henneberg L., Über salche minimalfläche, welche eine vorgeschriebene ebene curve sur geodätishen line haben. Doctoral Dissertation, Eidgenössisches Polythechikum, Zürich, 1875.
  • Henneberg L., Über diejenige minimalfläche, welche die Neil'sche Paralee zur ebenen geodätischen line hat, Vierteljschr Natuforsch, Ges. Zürich, 21 (1876) 66--70.
  • Henneberg L., Bestimmung der neidrigsten Classenzahl der algebraischen Minimalflächen. Annali di Matem. Pura Appl. 9 (1878) 54--57.
  • Inoguchi J., Lee S., Null curves in Minkowski 3-space, Int. Electron. J. Geom., 1, No. 2 (2008) 40--83.
  • Kobayashi O., Maximal surfaces in the 3-dimensional Minkowski space L³, Tokyo J. Math. 6, No. 2 (1983) 297--309.
  • Magid M., Timelike surfaces in Lorentz 3-space with prescribed mean curvature and Gauss map, Hokkaido Math. J. 20, No. 3 (1991) 447-464.
  • Nitsche J.C.C., Lectures on Minimal Surfaces. Vol. 1. Introduction, Fundamentals, Geometry and Basic Boundary Value Problems, Cambridge Un. Press, Cambridge, 1989.
  • Spivak M., A Comprehensive Introduction to Differential Geometry, Vol. IV. Third edition. Publish or Perish, Inc., Houston, Texas, 1999.
  • Umehara M., Yamada K., Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J. 35, 1 (2006) 13--40.
  • Weierstrass K., Untersuchungen über die Flächen, deren mittlere Krümmung überall gleich Null ist, Monatsber. d. Berliner Akad. (1866) 612--625.
  • Weierstrass K., Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen, Sitzungsberichte der Akademie zu Berlin (An expanded version of this paper with ten additional pages appeared in Weierstrass, Mathematische Werke, Mayer and Müller, Berlin, Vol. 3, (1903), 1--37), (1885), 633--639 and 789--805.
There are 14 citations in total.

Details

Primary Language English
Journal Section Review Articles
Authors

Erhan Güler 0000-0003-3264-6239

Vahit Zambak This is me 0000-0003-3264-6239

Publication Date August 1, 2019
Submission Date July 17, 2018
Acceptance Date March 6, 2019
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Güler, E., & Zambak, V. (2019). Henneberg’s algebraic surfaces in Minkowski 3-space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1761-1773. https://doi.org/10.31801/cfsuasmas.444554
AMA Güler E, Zambak V. Henneberg’s algebraic surfaces in Minkowski 3-space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):1761-1773. doi:10.31801/cfsuasmas.444554
Chicago Güler, Erhan, and Vahit Zambak. “Henneberg’s Algebraic Surfaces in Minkowski 3-Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 1761-73. https://doi.org/10.31801/cfsuasmas.444554.
EndNote Güler E, Zambak V (August 1, 2019) Henneberg’s algebraic surfaces in Minkowski 3-space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1761–1773.
IEEE E. Güler and V. Zambak, “Henneberg’s algebraic surfaces in Minkowski 3-space”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 1761–1773, 2019, doi: 10.31801/cfsuasmas.444554.
ISNAD Güler, Erhan - Zambak, Vahit. “Henneberg’s Algebraic Surfaces in Minkowski 3-Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 1761-1773. https://doi.org/10.31801/cfsuasmas.444554.
JAMA Güler E, Zambak V. Henneberg’s algebraic surfaces in Minkowski 3-space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1761–1773.
MLA Güler, Erhan and Vahit Zambak. “Henneberg’s Algebraic Surfaces in Minkowski 3-Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 1761-73, doi:10.31801/cfsuasmas.444554.
Vancouver Güler E, Zambak V. Henneberg’s algebraic surfaces in Minkowski 3-space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1761-73.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.