Research Article
BibTex RIS Cite
Year 2019, Volume: 68 Issue: 2, 1879 - 1894, 01.08.2019
https://doi.org/10.31801/cfsuasmas.461781

Abstract

References

  • Agrachev, A. A. and Sachkov, Y. L., An intrinsic approach to the control of rolling bodies, In Proc. 38th IEEE Conf. Decis. Control, Phoenix, AZ, USA (1999), 431--435.
  • Aydınalp, M., Kazaz, M. and Uğurlu, H. H., The forward kinematics of rolling contact of timelike curves lying on timelike surfaces, (2018), Manuscript submitted for publication.
  • Birman, G. S. and Nomizu, K., Trigonometry in Lorentzian Geometry, Ann. Math. Month., 91(9), (1984), 543--549.
  • Borras, J. and Di Gregorio, R., Polynomial solution to the position analysis of two assur kinematic chains with four loops and the same topology, ASME J. Mech. Rob., 1(2), (2009), 021003.
  • Bottema, O. and Roth, B., Theoretical Kinematics, North-Holland Publ. Co., Amsterdam, 1979, pp 556.
  • Cai, C. and Roth, B., On the spatial motion of rigid bodies with point contact, In Proc. IEEE Conf. Robot. Autom., (1987), 686--695.
  • Cai, C. and Roth, B., On the planar motion of rigid bodies with point contact, Mech. Mach. Theory, 21(6), (1986), 453--466.
  • Chelouah, A. and Chitour, Y., On the motion planning of rolling surfaces, Forum Math., 15(5), (2003), 727--758.
  • Cui, L. and Dai J. S., A Darboux-frame-based formulation of spin-rolling motion of rigid objects with point contact, IEEE Trans. Rob., 26(2), (2010), 383--388.
  • Cui, L., Differential Geometry Based Kinematics of Sliding-Rolling Contact and Its Use for Multifingered Hands, Ph.D. thesis, King's College London, University of London, London, UK, 2010.
  • Cui, L. and Dai J. S., A polynomial formulation of inverse kinematics of rolling contact, ASME J. Mech. Rob., 7(4), (2015), 041003_041001-041009.
  • Cui, L., Sun J. and Dai J. S., In-hand forward and inverse kinematics with rolling contact, Robotica, (2017), 1--19, doi:10.1017/S026357471700008X.
  • Do Carmo, M. P., Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, New Jersey, 1976.
  • Karger, A. and Novak, J., Space Kinematics and Lie Groups, STNL Publishers of Technical Lit., Prague, Czechoslovakia, 1978.
  • Kerr, J. and Roth, B., Analysis of multifingered hands, Int. J. Rob. Res., 4(4), (1986), 3--17.
  • Li, Z. X. and Canny, J., Motion of two rigid bodies with rolling constraint, IEEE Trans. Robot. Autom., 6(1), (1990), 62--72.
  • Li, Z., Hsu, P. and Sastry, S., Grasping and coordinated manipulation by a multifingered robot hand, Int. J. Rob. Res., 8(4), (1989), 33--50.
  • Marigo, A. and Bicchi, A., Rolling bodies with regular surface: Controllability theory and application, IEEE Trans. Autom. Control, 45(9), (2000), 1586--1599.
  • McCarthy, J. M., Kinematics, polynomials, and computers--A brief history, ASME J. Mech. Rob., 3(1), (2011), 010201.
  • Montana, D. J., The kinematics of contact and grasp, Int. J. Rob. Res., 7(3), (1988), 17--32.
  • Montana, D. J., The kinematics of multi-fingered manipulation, IEEE Trans. Robot. Autom., 11(4), (1995), 491--503.
  • Müller, H. R., Kinematik Dersleri, Ankara Üniversitesi Fen Fakültesi Yayınları, 1963.
  • Neimark, J. I. and Fufaev, N. A., Dynamics of Nonholonomic Systems, Providence, RI: Amer. Math. Soc., 1972.
  • Nelson, E. W., Best, C. L. and McLean, W. G., Schaum's Outline of Theory and Problems of Engineering Mechanics, Statics and Dynamics (5th Ed.), McGraw-Hill, New York, 1997.
  • O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London, 1983.
  • Ratcliffe, J. G., Foundations of Hyperbolic Manifolds, Springer, New York, 2006.
  • Sarkar, N., Kumar, V. and Yun, X., Velocity and acceleration analysis of contact between three-dimensional rigid bodies, ASME J. Appl. Mech., 63(4), (1996), 974--984.
  • Uğurlu, H. H. and Çalışkan, A., Darboux Ani Dönme Vektörleri ile Spacelike ve Timelike Yüzeyler Geometrisi, Celal Bayar Üniversitesi Yayınları, Manisa 2012.

The inverse kinematics of rolling contact of timelike curves lying on timelike surfaces

Year 2019, Volume: 68 Issue: 2, 1879 - 1894, 01.08.2019
https://doi.org/10.31801/cfsuasmas.461781

Abstract

Rolling contact between two
surfaces plays an important role in robotics and engineering
such as spherical robots, single wheel robots,
and multi-fingered robotic hands
to drive a moving
surface on a fixed surface. The rolling contact pairs have one, two, or three
degrees of freedom (DOFs) consisting of angular velocity components. Rolling
contact motion can be divided into two categories: spin-rolling motion and
pure-rolling motion. Spin-rolling motion has three (DOFs), and pure-rolling
motion has two (DOFs). Further,
it is well known that
the contact kinematics can be divided into two categories: forward kinematics
and inverse kinematics. In this paper,
we
investigate the inverse kinematics of spin-rolling motion without sliding of
one timelike surface on another timelike surface in the direction of timelike
unit tangent vectors of their timelike trajectory curves by determining the
desired motion and the coordinates of the contact point on each surface. We get
three nonlinear algebraic equations as inputs by using curvature theory in
Lorentzian geometry. These equations can be reduced as a univariate polynomial
of degree six by applying the Darboux frame method. This polynomial enables us
to obtain rapid and accurate numerical root approximations and to analyze the
rolling rate as an output. Moreover, we obtain another outputs: the rolling
direction and the compensatory spin rate.

References

  • Agrachev, A. A. and Sachkov, Y. L., An intrinsic approach to the control of rolling bodies, In Proc. 38th IEEE Conf. Decis. Control, Phoenix, AZ, USA (1999), 431--435.
  • Aydınalp, M., Kazaz, M. and Uğurlu, H. H., The forward kinematics of rolling contact of timelike curves lying on timelike surfaces, (2018), Manuscript submitted for publication.
  • Birman, G. S. and Nomizu, K., Trigonometry in Lorentzian Geometry, Ann. Math. Month., 91(9), (1984), 543--549.
  • Borras, J. and Di Gregorio, R., Polynomial solution to the position analysis of two assur kinematic chains with four loops and the same topology, ASME J. Mech. Rob., 1(2), (2009), 021003.
  • Bottema, O. and Roth, B., Theoretical Kinematics, North-Holland Publ. Co., Amsterdam, 1979, pp 556.
  • Cai, C. and Roth, B., On the spatial motion of rigid bodies with point contact, In Proc. IEEE Conf. Robot. Autom., (1987), 686--695.
  • Cai, C. and Roth, B., On the planar motion of rigid bodies with point contact, Mech. Mach. Theory, 21(6), (1986), 453--466.
  • Chelouah, A. and Chitour, Y., On the motion planning of rolling surfaces, Forum Math., 15(5), (2003), 727--758.
  • Cui, L. and Dai J. S., A Darboux-frame-based formulation of spin-rolling motion of rigid objects with point contact, IEEE Trans. Rob., 26(2), (2010), 383--388.
  • Cui, L., Differential Geometry Based Kinematics of Sliding-Rolling Contact and Its Use for Multifingered Hands, Ph.D. thesis, King's College London, University of London, London, UK, 2010.
  • Cui, L. and Dai J. S., A polynomial formulation of inverse kinematics of rolling contact, ASME J. Mech. Rob., 7(4), (2015), 041003_041001-041009.
  • Cui, L., Sun J. and Dai J. S., In-hand forward and inverse kinematics with rolling contact, Robotica, (2017), 1--19, doi:10.1017/S026357471700008X.
  • Do Carmo, M. P., Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, New Jersey, 1976.
  • Karger, A. and Novak, J., Space Kinematics and Lie Groups, STNL Publishers of Technical Lit., Prague, Czechoslovakia, 1978.
  • Kerr, J. and Roth, B., Analysis of multifingered hands, Int. J. Rob. Res., 4(4), (1986), 3--17.
  • Li, Z. X. and Canny, J., Motion of two rigid bodies with rolling constraint, IEEE Trans. Robot. Autom., 6(1), (1990), 62--72.
  • Li, Z., Hsu, P. and Sastry, S., Grasping and coordinated manipulation by a multifingered robot hand, Int. J. Rob. Res., 8(4), (1989), 33--50.
  • Marigo, A. and Bicchi, A., Rolling bodies with regular surface: Controllability theory and application, IEEE Trans. Autom. Control, 45(9), (2000), 1586--1599.
  • McCarthy, J. M., Kinematics, polynomials, and computers--A brief history, ASME J. Mech. Rob., 3(1), (2011), 010201.
  • Montana, D. J., The kinematics of contact and grasp, Int. J. Rob. Res., 7(3), (1988), 17--32.
  • Montana, D. J., The kinematics of multi-fingered manipulation, IEEE Trans. Robot. Autom., 11(4), (1995), 491--503.
  • Müller, H. R., Kinematik Dersleri, Ankara Üniversitesi Fen Fakültesi Yayınları, 1963.
  • Neimark, J. I. and Fufaev, N. A., Dynamics of Nonholonomic Systems, Providence, RI: Amer. Math. Soc., 1972.
  • Nelson, E. W., Best, C. L. and McLean, W. G., Schaum's Outline of Theory and Problems of Engineering Mechanics, Statics and Dynamics (5th Ed.), McGraw-Hill, New York, 1997.
  • O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London, 1983.
  • Ratcliffe, J. G., Foundations of Hyperbolic Manifolds, Springer, New York, 2006.
  • Sarkar, N., Kumar, V. and Yun, X., Velocity and acceleration analysis of contact between three-dimensional rigid bodies, ASME J. Appl. Mech., 63(4), (1996), 974--984.
  • Uğurlu, H. H. and Çalışkan, A., Darboux Ani Dönme Vektörleri ile Spacelike ve Timelike Yüzeyler Geometrisi, Celal Bayar Üniversitesi Yayınları, Manisa 2012.
There are 28 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Mehmet Aydinalp This is me 0000-0002-5601-866X

Mustafa Kazaz 0000-0002-7201-9179

Hasan Hüseyin Uğurlu 0000-0002-9900-6634

Publication Date August 1, 2019
Submission Date September 20, 2018
Acceptance Date February 27, 2019
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Aydinalp, M., Kazaz, M., & Uğurlu, H. H. (2019). The inverse kinematics of rolling contact of timelike curves lying on timelike surfaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1879-1894. https://doi.org/10.31801/cfsuasmas.461781
AMA Aydinalp M, Kazaz M, Uğurlu HH. The inverse kinematics of rolling contact of timelike curves lying on timelike surfaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):1879-1894. doi:10.31801/cfsuasmas.461781
Chicago Aydinalp, Mehmet, Mustafa Kazaz, and Hasan Hüseyin Uğurlu. “The Inverse Kinematics of Rolling Contact of Timelike Curves Lying on Timelike Surfaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 1879-94. https://doi.org/10.31801/cfsuasmas.461781.
EndNote Aydinalp M, Kazaz M, Uğurlu HH (August 1, 2019) The inverse kinematics of rolling contact of timelike curves lying on timelike surfaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1879–1894.
IEEE M. Aydinalp, M. Kazaz, and H. H. Uğurlu, “The inverse kinematics of rolling contact of timelike curves lying on timelike surfaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 1879–1894, 2019, doi: 10.31801/cfsuasmas.461781.
ISNAD Aydinalp, Mehmet et al. “The Inverse Kinematics of Rolling Contact of Timelike Curves Lying on Timelike Surfaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 1879-1894. https://doi.org/10.31801/cfsuasmas.461781.
JAMA Aydinalp M, Kazaz M, Uğurlu HH. The inverse kinematics of rolling contact of timelike curves lying on timelike surfaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1879–1894.
MLA Aydinalp, Mehmet et al. “The Inverse Kinematics of Rolling Contact of Timelike Curves Lying on Timelike Surfaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 1879-94, doi:10.31801/cfsuasmas.461781.
Vancouver Aydinalp M, Kazaz M, Uğurlu HH. The inverse kinematics of rolling contact of timelike curves lying on timelike surfaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1879-94.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.