Research Article
BibTex RIS Cite

Certain subclasses of bi-univalent functions related to k-Fibonacci numbers

Year 2019, Volume: 68 Issue: 2, 1909 - 1921, 01.08.2019
https://doi.org/10.31801/cfsuasmas.505287

Abstract

In this paper, we introduce and investigate new subclasses of bi-univalent
functions related to k-Fibonacci numbers. Furthermore, we nd estimates of first two
coecients of functions in these classes. Also, we obtain the Fekete-Szego inequalities
for these function classes.

References

  • Brannan D.A., Clunie J. and Kirwan W.E., Coefficient estimates for a class of star-like functions, Canad. J. Math., Vol.22 (1970), 476--485.
  • Brannan D.A. and Taha T.S., On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., Vol. 31, No.2 (1986), 70--77.
  • Bulut S., Certain subclasses of analytic and bi-univalent functions involving the q-derivative operator, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., Vol.66 (2017), 108--114.
  • Çaglar M. and Deniz E., Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., Vol.66 (2017), 85--91.
  • Duren P.L., Univalent Functions, in: Grundlehren der Mathematischen Wissenschaften, Band 259, New York, Berlin, Heidelberg and Tokyo, Springer-Verlag, 1983.
  • Güney H.Ö., Murugusundaramoorthy G. and Sokół J., Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univers. Sapientiae, Mathematica, Vol.10, No.1 (2018), 70--84.
  • Güney H.Ö., Sokół J. and İlhan S., Second Hankel determinant problem for some analytic function classes connected with k-Fibonacci numbers, Acta Univers. Apulensis, Vol.54 (2018), 161--174.
  • Lewin M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Vol.18 (1967), 63--68.
  • Li X-F. and Wang A-P., Two new subclasses of bi-univalent functions, Inter. Math. Forum, Vol.7, No.30 (2012), 1495--1504.
  • Özgür N.Y. and Sokół J., On starlike functions connected with k-Fibonacci numbers, Bull. Malaysian Math. Sci. Soc., Vol.38, No.1 (2015), 249--258.
  • Pommerenke, Ch., Univalent Functions, in: Studia Mathematica Mathematische Lehrbucher, Vanderhoeck and Ruprecht, Göttingen, 1975.
  • Sokół J., On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis, Vol.175, No.23 (1999), 111--116.
  • Sokół J., Remarks on shell-like functions, Folia Scient. Univ. Tech. Resoviensis, Vol.181, No.24 (2000), 111-115.
  • Srivastava H.M., Mishra A.K. and Gochhayat P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Vol.23, No.10 (2010), 1188--1192.
  • Xu Q.-H., Gui Y.-C. and Srivastava H.M., Coefficinet estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., Vol.25 (2012), 990--994.
  • Zaprawa P., On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, Vol.21, No.1 (2014), 169--178.
Year 2019, Volume: 68 Issue: 2, 1909 - 1921, 01.08.2019
https://doi.org/10.31801/cfsuasmas.505287

Abstract

References

  • Brannan D.A., Clunie J. and Kirwan W.E., Coefficient estimates for a class of star-like functions, Canad. J. Math., Vol.22 (1970), 476--485.
  • Brannan D.A. and Taha T.S., On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., Vol. 31, No.2 (1986), 70--77.
  • Bulut S., Certain subclasses of analytic and bi-univalent functions involving the q-derivative operator, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., Vol.66 (2017), 108--114.
  • Çaglar M. and Deniz E., Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., Vol.66 (2017), 85--91.
  • Duren P.L., Univalent Functions, in: Grundlehren der Mathematischen Wissenschaften, Band 259, New York, Berlin, Heidelberg and Tokyo, Springer-Verlag, 1983.
  • Güney H.Ö., Murugusundaramoorthy G. and Sokół J., Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univers. Sapientiae, Mathematica, Vol.10, No.1 (2018), 70--84.
  • Güney H.Ö., Sokół J. and İlhan S., Second Hankel determinant problem for some analytic function classes connected with k-Fibonacci numbers, Acta Univers. Apulensis, Vol.54 (2018), 161--174.
  • Lewin M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Vol.18 (1967), 63--68.
  • Li X-F. and Wang A-P., Two new subclasses of bi-univalent functions, Inter. Math. Forum, Vol.7, No.30 (2012), 1495--1504.
  • Özgür N.Y. and Sokół J., On starlike functions connected with k-Fibonacci numbers, Bull. Malaysian Math. Sci. Soc., Vol.38, No.1 (2015), 249--258.
  • Pommerenke, Ch., Univalent Functions, in: Studia Mathematica Mathematische Lehrbucher, Vanderhoeck and Ruprecht, Göttingen, 1975.
  • Sokół J., On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis, Vol.175, No.23 (1999), 111--116.
  • Sokół J., Remarks on shell-like functions, Folia Scient. Univ. Tech. Resoviensis, Vol.181, No.24 (2000), 111-115.
  • Srivastava H.M., Mishra A.K. and Gochhayat P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Vol.23, No.10 (2010), 1188--1192.
  • Xu Q.-H., Gui Y.-C. and Srivastava H.M., Coefficinet estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., Vol.25 (2012), 990--994.
  • Zaprawa P., On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, Vol.21, No.1 (2014), 169--178.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

H.özlem Güney 0000-0002-3010-7795

G. Murugusundaramoorthy 0000-0001-8285-6619

Janusz Sokol 0000-0003-1204-2286

Publication Date August 1, 2019
Submission Date December 30, 2018
Acceptance Date January 14, 2019
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Güney, H., Murugusundaramoorthy, G., & Sokol, J. (2019). Certain subclasses of bi-univalent functions related to k-Fibonacci numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1909-1921. https://doi.org/10.31801/cfsuasmas.505287
AMA Güney H, Murugusundaramoorthy G, Sokol J. Certain subclasses of bi-univalent functions related to k-Fibonacci numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):1909-1921. doi:10.31801/cfsuasmas.505287
Chicago Güney, H.özlem, G. Murugusundaramoorthy, and Janusz Sokol. “Certain Subclasses of Bi-Univalent Functions Related to K-Fibonacci Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 1909-21. https://doi.org/10.31801/cfsuasmas.505287.
EndNote Güney H, Murugusundaramoorthy G, Sokol J (August 1, 2019) Certain subclasses of bi-univalent functions related to k-Fibonacci numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1909–1921.
IEEE H. Güney, G. Murugusundaramoorthy, and J. Sokol, “Certain subclasses of bi-univalent functions related to k-Fibonacci numbers”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 1909–1921, 2019, doi: 10.31801/cfsuasmas.505287.
ISNAD Güney, H.özlem et al. “Certain Subclasses of Bi-Univalent Functions Related to K-Fibonacci Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 1909-1921. https://doi.org/10.31801/cfsuasmas.505287.
JAMA Güney H, Murugusundaramoorthy G, Sokol J. Certain subclasses of bi-univalent functions related to k-Fibonacci numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1909–1921.
MLA Güney, H.özlem et al. “Certain Subclasses of Bi-Univalent Functions Related to K-Fibonacci Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 1909-21, doi:10.31801/cfsuasmas.505287.
Vancouver Güney H, Murugusundaramoorthy G, Sokol J. Certain subclasses of bi-univalent functions related to k-Fibonacci numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1909-21.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.