Spherical indicatrices of a Bertrand curve in three dimensional Lie groups
Year 2019,
Volume: 68 Issue: 2, 1930 - 1938, 01.08.2019
Ali Çakmak
,
Sezai Kızıltuğ
Abstract
In this paper, new representations of a Bertrand curve pair in three dimensional Lie groups with bi-invariant metric are given. Besides, the spherical indicatrices of a Bertrand curve pair are obtained and the relations between the spherical indicatrices and new representations of Bertrand curve pair are shown.
References
- Ahmat, T. A., New special curves and their spherical indicatrices,Global Journal of Advanced Research on Classical and Modern Geometries, 1 (2), (2012), 28-38.
- Cöken, A. C. and Çiftçi, Ü., A note on the geometry of Lie groups, Nonlinear Analysis, TMA68 (2008), 2013-2016.
- Crouch, P. and Leite, F. S., The dynamic interpolation problem: on Riemannian manifolds, Lie groups and symmetric spaces, J. Dyn. Control Syst. 1(2), (1995), 177-202.
- Çiftçi, Ü., A generalization of Lancert's theorem, J. Geom. Phys. 59 (2009), 1597-1603.
- Do Espırito-Santo, N., Fornari, S., Frensel, K. and Ripoll, J., Constant mean curvature hypersurfaces in a Lie group with a bi-invariant metric, Manuscripta Math. 111 (4), (2003), 459-470.
- Ekmekci, N. and İlarslan, K., On Bertrand curves and their characterization, Differ. Geom.Dyn.Syst. 3 (2001), no. 2, 17-24.
- Gök, İ., Okuyucu, O. Z., Ekmekci, N. and Yaylı, Y., On Mannheim partner curves in three dimensional Lie groups, Miskolc Mathematical Notes, 17(2), (2017), 999-1010.
- Izumiya, S. and Takeuchi, N., Generic properties of helices and Bertrand curves, J. Geom. 74 (2002), 97--109.
- Izumiya, S. and Takeuchi, N., New special curves and developable surfaces, Turkish J. Math. 28 (2), (2004)153--163.
- Kula, L. and Yaylı, Y., On slant helix and its sphereical indicatrix, Applied Mathematics and Computation, 169 (2005), 600-6007.
- Matsuda, H. and Yorozu, S., Notes on Bertrand curves, Yokohama Mathematical Journal, 50 (2003), 41--58.
- Okuyucu, O. Z., Gök, İ., Yaylı, Y. and Ekmekci, N., Bertrand curves in three dimensional Lie groups, Miskolc Mathematical Notes, 17(2), (2017), 999-1010.
- Okuyucu, O.Z., Gök, İ., Yaylı, Y. and Ekmekçi, F.N., Slant helices in three dimensional Lie groups, Applied Mathematics and Computation, 221 (2013), 672--683.
- Tunçer, Y. and Ünal, S., New representations of Bertrand pairs in Euclidean 3-space, Applied Mathematics and Computation, 219 (2012), 1833-1842.
- Whittemore, J.K., Bertrand curves and helices, Duke Math. J. 6(1), (1940), 235-245.
Year 2019,
Volume: 68 Issue: 2, 1930 - 1938, 01.08.2019
Ali Çakmak
,
Sezai Kızıltuğ
References
- Ahmat, T. A., New special curves and their spherical indicatrices,Global Journal of Advanced Research on Classical and Modern Geometries, 1 (2), (2012), 28-38.
- Cöken, A. C. and Çiftçi, Ü., A note on the geometry of Lie groups, Nonlinear Analysis, TMA68 (2008), 2013-2016.
- Crouch, P. and Leite, F. S., The dynamic interpolation problem: on Riemannian manifolds, Lie groups and symmetric spaces, J. Dyn. Control Syst. 1(2), (1995), 177-202.
- Çiftçi, Ü., A generalization of Lancert's theorem, J. Geom. Phys. 59 (2009), 1597-1603.
- Do Espırito-Santo, N., Fornari, S., Frensel, K. and Ripoll, J., Constant mean curvature hypersurfaces in a Lie group with a bi-invariant metric, Manuscripta Math. 111 (4), (2003), 459-470.
- Ekmekci, N. and İlarslan, K., On Bertrand curves and their characterization, Differ. Geom.Dyn.Syst. 3 (2001), no. 2, 17-24.
- Gök, İ., Okuyucu, O. Z., Ekmekci, N. and Yaylı, Y., On Mannheim partner curves in three dimensional Lie groups, Miskolc Mathematical Notes, 17(2), (2017), 999-1010.
- Izumiya, S. and Takeuchi, N., Generic properties of helices and Bertrand curves, J. Geom. 74 (2002), 97--109.
- Izumiya, S. and Takeuchi, N., New special curves and developable surfaces, Turkish J. Math. 28 (2), (2004)153--163.
- Kula, L. and Yaylı, Y., On slant helix and its sphereical indicatrix, Applied Mathematics and Computation, 169 (2005), 600-6007.
- Matsuda, H. and Yorozu, S., Notes on Bertrand curves, Yokohama Mathematical Journal, 50 (2003), 41--58.
- Okuyucu, O. Z., Gök, İ., Yaylı, Y. and Ekmekci, N., Bertrand curves in three dimensional Lie groups, Miskolc Mathematical Notes, 17(2), (2017), 999-1010.
- Okuyucu, O.Z., Gök, İ., Yaylı, Y. and Ekmekçi, F.N., Slant helices in three dimensional Lie groups, Applied Mathematics and Computation, 221 (2013), 672--683.
- Tunçer, Y. and Ünal, S., New representations of Bertrand pairs in Euclidean 3-space, Applied Mathematics and Computation, 219 (2012), 1833-1842.
- Whittemore, J.K., Bertrand curves and helices, Duke Math. J. 6(1), (1940), 235-245.