Research Article
BibTex RIS Cite

The matrix sequence in terms of bi-periodic Fibonacci numbers

Year 2019, Volume: 68 Issue: 2, 1939 - 1949, 01.08.2019
https://doi.org/10.31801/cfsuasmas.571975

Abstract

In this paper, we define the bi-periodic Fibonacci matrix sequence that represent bi-periodic Fibonacci numbers. Then, we investigate generating function, Binet formula and summations of bi-periodic Fibonacci matrix sequence. After, we say that some behaviours of bi-periodic Fibonacci numbers can be obtained via the properties of this new matrix sequence. Finally, we express that well-known matrix sequences such as Fibonacci, Pell, k-Fibonacci matrix sequences are special cases of this generalized matrix sequence.

References

  • Bilgici G., Two generalizations of Lucas sequence, Applied Mathematics and Computation, 245 (2014), 526-538.
  • Civciv H., Türkmen R., On the (s,t)-Fibonacci and Fibonacci matrix sequences, Ars Combinatoria, 87 (2008), 161-173.
  • Edson M., Yayanie O., A new Generalization of Fibonacci sequence and Extended Binet's Formula, Integers, 9 (2009), 639-654.
  • Falcon S., Plaza A., On the Fibonacci k-numbers, Chaos, Solitons & Fractal, 32 (2007), 1615-1624.
  • Gulec H.H., Taskara N., On the (s,t)-Pell and (s,t)-Pell-Lucas sequences and their matrix representations, Applied Mathematics Letter, 25 (2012), 1554-1559.
  • Horadam A.F., A generalized Fibonacci sequence, Math. Mag., 68 (1961), 455-459.
  • Koshy T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons Inc, NY, 2001.
  • Marek-Crnjac L, The mass spectrum of high energy elementary particles via El Naschie's golden mean nested oscillators, the Dunkerly-Southwell eigenvalue theorems and KAM, Chaos, Solutions & Fractals, 18(1) (2003), 125-133.
  • Ocal A.A., Tuglu N., Altinisik E., On the representation of k-generalized Fibonacci and Lucas numbers, Applied Mathematics and Computations, 170 (1) (2005), 584-596.
  • Panario D., Sahin M., Wang Q., Non-homogeneous conditional recurrences, Linear and Multilinear Algebra, 66 (10) (2018), 2089-2099.
  • Sahin M., The generating function of a family of the sequences in terms of the continuant, Applied Mathematics and Computations, 217 (12) (2011), 5416-5420.
  • Tan E., Ekin A.B., Some identities on conditional sequences by using matrix method, Miskolc Mathematical Notes, 18 (1) (2017), 469-477.
  • Tan E., On bi-periodic Fibonacci and Lucas numbers by matrix method, Ars Combinatoria, 133 (2017), 107-113.
  • Tasci D., Firengiz M.C., Incomplete Fibonacci and Lucas p-numbers, Mathematical and Computer Modelling, 52(9) (2010), 1763-1770.
  • Uslu K., Uygun S., The (s,t) Jacobsthal and (s,t) Jacobsthal-Lucas Matrix Sequences, Ars Combinatoria, 108 (2013), 13-22.
  • Vajda S., Fibonacci & Lucas numbers and the golden section. Theory and Applications, Ellis Horwood Limited, 1989.
  • Yazlik Y., Taskara N., A note on generalized k-Horadam sequence, Computers and Mathematics with Applications, 63 (2012), 36-41.
  • Yazlik Y., Taskara N., Uslu K., Yilmaz N., The Generalized (s,t)-Sequence and its Matrix Sequence, American Institute of Physics (AIP) Conf. Proc., 1389 (2012), 381-384.
Year 2019, Volume: 68 Issue: 2, 1939 - 1949, 01.08.2019
https://doi.org/10.31801/cfsuasmas.571975

Abstract

References

  • Bilgici G., Two generalizations of Lucas sequence, Applied Mathematics and Computation, 245 (2014), 526-538.
  • Civciv H., Türkmen R., On the (s,t)-Fibonacci and Fibonacci matrix sequences, Ars Combinatoria, 87 (2008), 161-173.
  • Edson M., Yayanie O., A new Generalization of Fibonacci sequence and Extended Binet's Formula, Integers, 9 (2009), 639-654.
  • Falcon S., Plaza A., On the Fibonacci k-numbers, Chaos, Solitons & Fractal, 32 (2007), 1615-1624.
  • Gulec H.H., Taskara N., On the (s,t)-Pell and (s,t)-Pell-Lucas sequences and their matrix representations, Applied Mathematics Letter, 25 (2012), 1554-1559.
  • Horadam A.F., A generalized Fibonacci sequence, Math. Mag., 68 (1961), 455-459.
  • Koshy T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons Inc, NY, 2001.
  • Marek-Crnjac L, The mass spectrum of high energy elementary particles via El Naschie's golden mean nested oscillators, the Dunkerly-Southwell eigenvalue theorems and KAM, Chaos, Solutions & Fractals, 18(1) (2003), 125-133.
  • Ocal A.A., Tuglu N., Altinisik E., On the representation of k-generalized Fibonacci and Lucas numbers, Applied Mathematics and Computations, 170 (1) (2005), 584-596.
  • Panario D., Sahin M., Wang Q., Non-homogeneous conditional recurrences, Linear and Multilinear Algebra, 66 (10) (2018), 2089-2099.
  • Sahin M., The generating function of a family of the sequences in terms of the continuant, Applied Mathematics and Computations, 217 (12) (2011), 5416-5420.
  • Tan E., Ekin A.B., Some identities on conditional sequences by using matrix method, Miskolc Mathematical Notes, 18 (1) (2017), 469-477.
  • Tan E., On bi-periodic Fibonacci and Lucas numbers by matrix method, Ars Combinatoria, 133 (2017), 107-113.
  • Tasci D., Firengiz M.C., Incomplete Fibonacci and Lucas p-numbers, Mathematical and Computer Modelling, 52(9) (2010), 1763-1770.
  • Uslu K., Uygun S., The (s,t) Jacobsthal and (s,t) Jacobsthal-Lucas Matrix Sequences, Ars Combinatoria, 108 (2013), 13-22.
  • Vajda S., Fibonacci & Lucas numbers and the golden section. Theory and Applications, Ellis Horwood Limited, 1989.
  • Yazlik Y., Taskara N., A note on generalized k-Horadam sequence, Computers and Mathematics with Applications, 63 (2012), 36-41.
  • Yazlik Y., Taskara N., Uslu K., Yilmaz N., The Generalized (s,t)-Sequence and its Matrix Sequence, American Institute of Physics (AIP) Conf. Proc., 1389 (2012), 381-384.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Arzu Coskun 0000-0002-7755-5747

Necati Taskara This is me 0000-0001-7974-435X

Publication Date August 1, 2019
Submission Date May 1, 2018
Acceptance Date April 6, 2019
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Coskun, A., & Taskara, N. (2019). The matrix sequence in terms of bi-periodic Fibonacci numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1939-1949. https://doi.org/10.31801/cfsuasmas.571975
AMA Coskun A, Taskara N. The matrix sequence in terms of bi-periodic Fibonacci numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):1939-1949. doi:10.31801/cfsuasmas.571975
Chicago Coskun, Arzu, and Necati Taskara. “The Matrix Sequence in Terms of Bi-Periodic Fibonacci Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 1939-49. https://doi.org/10.31801/cfsuasmas.571975.
EndNote Coskun A, Taskara N (August 1, 2019) The matrix sequence in terms of bi-periodic Fibonacci numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1939–1949.
IEEE A. Coskun and N. Taskara, “The matrix sequence in terms of bi-periodic Fibonacci numbers”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 1939–1949, 2019, doi: 10.31801/cfsuasmas.571975.
ISNAD Coskun, Arzu - Taskara, Necati. “The Matrix Sequence in Terms of Bi-Periodic Fibonacci Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 1939-1949. https://doi.org/10.31801/cfsuasmas.571975.
JAMA Coskun A, Taskara N. The matrix sequence in terms of bi-periodic Fibonacci numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1939–1949.
MLA Coskun, Arzu and Necati Taskara. “The Matrix Sequence in Terms of Bi-Periodic Fibonacci Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 1939-4, doi:10.31801/cfsuasmas.571975.
Vancouver Coskun A, Taskara N. The matrix sequence in terms of bi-periodic Fibonacci numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1939-4.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.