Research Article
BibTex RIS Cite

Position vectors of curves with recpect to Darboux frame in the Galilean space G³

Year 2019, Volume: 68 Issue: 2, 2079 - 2093, 01.08.2019
https://doi.org/10.31801/cfsuasmas.586095

Abstract

In this paper, we investigate the position vector of a curve on the surface in the Galilean 3-space G³. Firstly, the position vector of a curve with respect to the Darboux frame is determined. Secondly, we obtain the standard representation of the position vector of the curve with respect to Darboux frame in terms of the geodesic, normal curvature and geodesic torsion. As a result of this, we define the position vectors of geodesic, asymptotic and normal line along with some special curves with respect to Darboux frame. Finally, we elaborate on some examples and provide their graphs.

References

  • Kreyszig, E., Differential Geometry, Dover Publications, Reprint, New York, 1991.
  • McCleary, J., Geoemetry From a Differentiable Viewpoint, Cambridge University Press, 1994.
  • Ali, A.T., Position vectors of curves in the Galilean space G³, Matematicki Vesnik, 64(3) (2012), 200--210.
  • Ali, A.T., Position vectors of spacelike general helices in Minkowski 3-space, Nonlin. Anal. Theory Meth. Appl. 73(2010), 1118--1126.
  • Ali, A.T., Position vectors of slant helices in Euclidean 3-space, Journal of the Egyptian Mathematical Society, 20(1) (2012), 1--6.
  • Izumiya, S. and Takeuchi, N., New special curves and developable surfaces, Turk. J. Math. 28(2004), 531--537.
  • Molnar, E., The projective interpretation of the eight 3-dimensional homogeneous geometries, Beitr. Algebra Geom. 38(1997), 261--288
  • Pavković, B.J. and Kamenarović, I., The equiform differential geometry of curves in the Galilean space, Glasnik Matematikci. 22(42) (1987), 449--457.
  • Pavković, B.J. , The general solution of the Frenet system of differential equations for curves in the Galilean space G³, Rad HAZU Math. 450 (1990), 123--128.
  • Şahin, T., Intrinsic equations for a generalized relaxed elastic line on an oriented surface in the Galilean space, Acta Math Sci. 33B(3) (2013) 701--711.
  • Roschel, O., Die Geometrie des Galileischen Raumes, Habilitation Schrift, Leoben 1984.
  • Yaglom, I. M. , A simple non-Euclidean geometry and its physical basis, Springer-Verlag, Nw York, 1979.
  • Monterde, J., Salkowski curves revisted: A family of curves with constant curvature and non-constant torsion, Comput. Aided Geomet. Design. 26 (2009), 271--278.
  • Salkowski, E., Zur transformation von raumkurven, Math. Ann. 66 (1909), 517- 557.
  • Şahin, T. and Okur, M., Special Smarandache curves with respect to Darboux frame in Galilean 3-Space, Int. J. Adv. Appl. Math. and Mech. 5(3)(2018), 15--26 (ISSN: 2347-2529).
Year 2019, Volume: 68 Issue: 2, 2079 - 2093, 01.08.2019
https://doi.org/10.31801/cfsuasmas.586095

Abstract

References

  • Kreyszig, E., Differential Geometry, Dover Publications, Reprint, New York, 1991.
  • McCleary, J., Geoemetry From a Differentiable Viewpoint, Cambridge University Press, 1994.
  • Ali, A.T., Position vectors of curves in the Galilean space G³, Matematicki Vesnik, 64(3) (2012), 200--210.
  • Ali, A.T., Position vectors of spacelike general helices in Minkowski 3-space, Nonlin. Anal. Theory Meth. Appl. 73(2010), 1118--1126.
  • Ali, A.T., Position vectors of slant helices in Euclidean 3-space, Journal of the Egyptian Mathematical Society, 20(1) (2012), 1--6.
  • Izumiya, S. and Takeuchi, N., New special curves and developable surfaces, Turk. J. Math. 28(2004), 531--537.
  • Molnar, E., The projective interpretation of the eight 3-dimensional homogeneous geometries, Beitr. Algebra Geom. 38(1997), 261--288
  • Pavković, B.J. and Kamenarović, I., The equiform differential geometry of curves in the Galilean space, Glasnik Matematikci. 22(42) (1987), 449--457.
  • Pavković, B.J. , The general solution of the Frenet system of differential equations for curves in the Galilean space G³, Rad HAZU Math. 450 (1990), 123--128.
  • Şahin, T., Intrinsic equations for a generalized relaxed elastic line on an oriented surface in the Galilean space, Acta Math Sci. 33B(3) (2013) 701--711.
  • Roschel, O., Die Geometrie des Galileischen Raumes, Habilitation Schrift, Leoben 1984.
  • Yaglom, I. M. , A simple non-Euclidean geometry and its physical basis, Springer-Verlag, Nw York, 1979.
  • Monterde, J., Salkowski curves revisted: A family of curves with constant curvature and non-constant torsion, Comput. Aided Geomet. Design. 26 (2009), 271--278.
  • Salkowski, E., Zur transformation von raumkurven, Math. Ann. 66 (1909), 517- 557.
  • Şahin, T. and Okur, M., Special Smarandache curves with respect to Darboux frame in Galilean 3-Space, Int. J. Adv. Appl. Math. and Mech. 5(3)(2018), 15--26 (ISSN: 2347-2529).
There are 15 citations in total.

Details

Primary Language English
Journal Section Review Articles
Authors

Tevfik Şahin 0000-0001-7598-5842

Buket Ceylan Dirişen This is me 0000-0002-8831-7373

Publication Date August 1, 2019
Submission Date April 22, 2018
Acceptance Date May 30, 2019
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Şahin, T., & Dirişen, B. C. (2019). Position vectors of curves with recpect to Darboux frame in the Galilean space G³. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 2079-2093. https://doi.org/10.31801/cfsuasmas.586095
AMA Şahin T, Dirişen BC. Position vectors of curves with recpect to Darboux frame in the Galilean space G³. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):2079-2093. doi:10.31801/cfsuasmas.586095
Chicago Şahin, Tevfik, and Buket Ceylan Dirişen. “Position Vectors of Curves With Recpect to Darboux Frame in the Galilean Space G³”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 2079-93. https://doi.org/10.31801/cfsuasmas.586095.
EndNote Şahin T, Dirişen BC (August 1, 2019) Position vectors of curves with recpect to Darboux frame in the Galilean space G³. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 2079–2093.
IEEE T. Şahin and B. C. Dirişen, “Position vectors of curves with recpect to Darboux frame in the Galilean space G³”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 2079–2093, 2019, doi: 10.31801/cfsuasmas.586095.
ISNAD Şahin, Tevfik - Dirişen, Buket Ceylan. “Position Vectors of Curves With Recpect to Darboux Frame in the Galilean Space G³”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 2079-2093. https://doi.org/10.31801/cfsuasmas.586095.
JAMA Şahin T, Dirişen BC. Position vectors of curves with recpect to Darboux frame in the Galilean space G³. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:2079–2093.
MLA Şahin, Tevfik and Buket Ceylan Dirişen. “Position Vectors of Curves With Recpect to Darboux Frame in the Galilean Space G³”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 2079-93, doi:10.31801/cfsuasmas.586095.
Vancouver Şahin T, Dirişen BC. Position vectors of curves with recpect to Darboux frame in the Galilean space G³. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):2079-93.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.