BibTex RIS Cite
Year 2009, Volume: 58 Issue: 1, 1 - 8, 01.02.2009
https://doi.org/10.1501/Commua1_0000000641

Abstract

References

  • M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, On I-open sets and I-continuous functions, Kyungpook Math. J., 32(1992), 21-30.
  • M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, S-compactness via ideals, Tamkang J. Math., 24(4)(1993), 431-443.
  • M. E. Abd El-Monsef, R. A. Mahmoud and A. A. Nasef, Strongly semi-continuous functions, Arab J. Phys. Math., 11(1990).
  • A. Acikgoz, S. Yuksel and T. Noiri, I-preirresolute functions and I-preirresolute func- tions, Bull. Malays. Math. Sci. Soc., (2)(28)(1)(2005), 1-8.
  • Y. Beceren and T. Noiri, Strongly precontinuous functions, Acta Math. Hungar., 108(1- )(2005), 47-53.
  • D. A. Carnahan, Some properties related to compactness in topological spaces, Ph.D. Thesis, Univ. of Arkansas, 1973.
  • S. G. Crossley and S. K. Hildrebrand, Semi-closure, Texas J. Sci., 22(1971), 99-112.
  • S. G. Crossley and S. K. Hildreband, Semi-topological spaces, Fund. Math., 74(3)(1972), 254.
  • J. Dontchev, Idealization of Ganster-Reilly decomposition theorems, preprint. J. Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J., (1996).
  • R. L. Ellis, A non-archimedean analogue of the Tietz Urysohn extension theorem, Nederl. Akad. Wetensch. Proc. Ser. A., 70(1967), 332-333.
  • E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., (4)(2002), 341-349.
  • E. Hayashi, Topologies de…ned by local properties, Math. Ann., 156(1964), 205-215.
  • D. Jankovic and T. R. Hamlett, New topologies from old via ideals, American Math. Monthly, (1990), 295-310.
  • A. Keskin and S. Yuksel, On K. Kuratowski, Topology, Academic Press, New York, 1966.
  • N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, spaces, JFS, 29(2006), 12-24. (1963), 36-41.
  • S. N. Maheshwari and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie N. S., 70(1978), 27.
  • S. N. Maheshwari and R. Prasad, On s-regular spaces, Glasnik Mat., 30(1975), 347-350.
  • S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, (1975), 395-402.
  • A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On pre-continuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
  • R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D. Thesis, University of California, USA (1967).
  • T. Noiri, Remarks on semi-open mappings, Bull. Calcutta Math. Soc., 65(1973), 197-201.
  • V. Pipitone and G. Russo, Spazi semiconnessi e spazi semiaperti, Rend. Circ. Mat. Palermo, (2)24(1975), 273-385.
  • R. Vaidyanatahswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., (1945), 51-61.
  • S. Yuksel, A. Acikgoz and E. Gursel, A new type of continuous functions in ideal topological space, to appear in J. Indian Acad. Math. S. Yuksel, T. Noiri and A. Acikgoz, On strongly I-continuous functions, Far. East J. Math., (1)(2003), 1-8.
  • Current address : J. Bhuvaneswari: Department of Computer Applications Rajalakshmi En- gineering College Thandalam, Chennai-602 105 TamilNadu, INDIA,, N. Rajesh: Department of Mathematics Kongu Engineering College Perundurai, Erode-638 052 Tamilnadu, INDIA,, A. Ke- skin: Selcuk University Faculty of Sciences and Arts, Department of Mathematics 42075, Campus Konya, TURKEY
  • E-mail address : sai_jbhuvana@yahoo.co.in, nrajesh_topology@yahoo.co.in, akeskin@selcuk.edu.tr

STRONG FORM OF PRE-I-CONTINUOUS FUNCTIONS

Year 2009, Volume: 58 Issue: 1, 1 - 8, 01.02.2009
https://doi.org/10.1501/Commua1_0000000641

Abstract

In this paper, semiopen and pre-I-open sets used to define and investigate a new class of functions called strongly pre-I-continuous. Relationships between the new class and other classes of functions are established

References

  • M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, On I-open sets and I-continuous functions, Kyungpook Math. J., 32(1992), 21-30.
  • M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, S-compactness via ideals, Tamkang J. Math., 24(4)(1993), 431-443.
  • M. E. Abd El-Monsef, R. A. Mahmoud and A. A. Nasef, Strongly semi-continuous functions, Arab J. Phys. Math., 11(1990).
  • A. Acikgoz, S. Yuksel and T. Noiri, I-preirresolute functions and I-preirresolute func- tions, Bull. Malays. Math. Sci. Soc., (2)(28)(1)(2005), 1-8.
  • Y. Beceren and T. Noiri, Strongly precontinuous functions, Acta Math. Hungar., 108(1- )(2005), 47-53.
  • D. A. Carnahan, Some properties related to compactness in topological spaces, Ph.D. Thesis, Univ. of Arkansas, 1973.
  • S. G. Crossley and S. K. Hildrebrand, Semi-closure, Texas J. Sci., 22(1971), 99-112.
  • S. G. Crossley and S. K. Hildreband, Semi-topological spaces, Fund. Math., 74(3)(1972), 254.
  • J. Dontchev, Idealization of Ganster-Reilly decomposition theorems, preprint. J. Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J., (1996).
  • R. L. Ellis, A non-archimedean analogue of the Tietz Urysohn extension theorem, Nederl. Akad. Wetensch. Proc. Ser. A., 70(1967), 332-333.
  • E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., (4)(2002), 341-349.
  • E. Hayashi, Topologies de…ned by local properties, Math. Ann., 156(1964), 205-215.
  • D. Jankovic and T. R. Hamlett, New topologies from old via ideals, American Math. Monthly, (1990), 295-310.
  • A. Keskin and S. Yuksel, On K. Kuratowski, Topology, Academic Press, New York, 1966.
  • N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, spaces, JFS, 29(2006), 12-24. (1963), 36-41.
  • S. N. Maheshwari and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie N. S., 70(1978), 27.
  • S. N. Maheshwari and R. Prasad, On s-regular spaces, Glasnik Mat., 30(1975), 347-350.
  • S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, (1975), 395-402.
  • A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On pre-continuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
  • R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D. Thesis, University of California, USA (1967).
  • T. Noiri, Remarks on semi-open mappings, Bull. Calcutta Math. Soc., 65(1973), 197-201.
  • V. Pipitone and G. Russo, Spazi semiconnessi e spazi semiaperti, Rend. Circ. Mat. Palermo, (2)24(1975), 273-385.
  • R. Vaidyanatahswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., (1945), 51-61.
  • S. Yuksel, A. Acikgoz and E. Gursel, A new type of continuous functions in ideal topological space, to appear in J. Indian Acad. Math. S. Yuksel, T. Noiri and A. Acikgoz, On strongly I-continuous functions, Far. East J. Math., (1)(2003), 1-8.
  • Current address : J. Bhuvaneswari: Department of Computer Applications Rajalakshmi En- gineering College Thandalam, Chennai-602 105 TamilNadu, INDIA,, N. Rajesh: Department of Mathematics Kongu Engineering College Perundurai, Erode-638 052 Tamilnadu, INDIA,, A. Ke- skin: Selcuk University Faculty of Sciences and Arts, Department of Mathematics 42075, Campus Konya, TURKEY
  • E-mail address : sai_jbhuvana@yahoo.co.in, nrajesh_topology@yahoo.co.in, akeskin@selcuk.edu.tr
There are 26 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

J. Bhuvaneswar This is me

N. Rajesh This is me

A. Keskın This is me

Publication Date February 1, 2009
Published in Issue Year 2009 Volume: 58 Issue: 1

Cite

APA Bhuvaneswar, J., Rajesh, N., & Keskın, A. (2009). STRONG FORM OF PRE-I-CONTINUOUS FUNCTIONS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 58(1), 1-8. https://doi.org/10.1501/Commua1_0000000641
AMA Bhuvaneswar J, Rajesh N, Keskın A. STRONG FORM OF PRE-I-CONTINUOUS FUNCTIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2009;58(1):1-8. doi:10.1501/Commua1_0000000641
Chicago Bhuvaneswar, J., N. Rajesh, and A. Keskın. “STRONG FORM OF PRE-I-CONTINUOUS FUNCTIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 58, no. 1 (February 2009): 1-8. https://doi.org/10.1501/Commua1_0000000641.
EndNote Bhuvaneswar J, Rajesh N, Keskın A (February 1, 2009) STRONG FORM OF PRE-I-CONTINUOUS FUNCTIONS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 58 1 1–8.
IEEE J. Bhuvaneswar, N. Rajesh, and A. Keskın, “STRONG FORM OF PRE-I-CONTINUOUS FUNCTIONS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 58, no. 1, pp. 1–8, 2009, doi: 10.1501/Commua1_0000000641.
ISNAD Bhuvaneswar, J. et al. “STRONG FORM OF PRE-I-CONTINUOUS FUNCTIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 58/1 (February 2009), 1-8. https://doi.org/10.1501/Commua1_0000000641.
JAMA Bhuvaneswar J, Rajesh N, Keskın A. STRONG FORM OF PRE-I-CONTINUOUS FUNCTIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2009;58:1–8.
MLA Bhuvaneswar, J. et al. “STRONG FORM OF PRE-I-CONTINUOUS FUNCTIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 58, no. 1, 2009, pp. 1-8, doi:10.1501/Commua1_0000000641.
Vancouver Bhuvaneswar J, Rajesh N, Keskın A. STRONG FORM OF PRE-I-CONTINUOUS FUNCTIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2009;58(1):1-8.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.