BibTex RIS Cite

and ON SOME NEW DOUBLE SEQUENCE SPACES OF INVARIANT MEANS DEFINED BY ORLICZ FUNCTIONS and VAKEEL A. KHAN AND SABIHA TABASSUM

Year 2011, Volume: 60 Issue: 2, 11 - 21, 01.08.2011
https://doi.org/10.1501/Commua1_0000000672

Abstract

The sequence space BVm was introduced and studied by Mursaleen[14]. In this paper we extend BVa to 2BVa(p; r; s) and study some
properties and inclusion relations on this space.

References

  • Ahmad Z.U.and Mursaleen M. An application of banach limits. Proc. Amer. Math. Soc., ,103, 244-246. Çacan C.,Altay and Mursaeen. The Math. Lett., 2006,19, 1122-1128. convergence and core of doube sequences. Appl.
  • Khan V.A. On a new sequence spaces de…ned by Musielak Orlicz Functions. Studia Math., , LV-2, 143-149. Khan V.A. Quasi almost convergence in a normed space for double sequences. Thai J.Math., , 8(1), 227-231. Khan V.A. On a new sequence space de…ned by Orlicz Functions. Commun. Fac. Sci. Univ. Ank. Series Al, 2008, 57(2), 25-33.
  • Khan V.A. On a new sequence space related to the Orlicz sequence space. J. Mathematics and its applications, 2008, 30, 61-69.
  • Khan V.A. On Riesz-Musielak Orlicz sequence spaces. Numerical Functional Analysis and Optimization, 2007, 28(7-8), 883-895.
  • Khan V.A. and Lohani Q.M.D. Statistically Pre-Cauchy sequence and Orlicz Functions. Southeast Asian Bull.Math.,2007, 31, 1107-1112.
  • Lindenstrauss J. and Tza…ri L. On Orlicz Sequence Spaces. Israel J.Math., 1971, 10, 379-390.
  • Lorentz G.G. A contribution to the theory of divergent series. Acta Math., 1948,80, 167-190.
  • Moricz F. and Rhoades B.E. Almost Convergence of double sequences and strong regularity of summability matrices. Math.Proc.Camb.Phil.Soc., 1987, 104, 283-294.
  • Mursaleen M. and Mohiuddine S.A. Some new double sequences of invariant-means. Glasnik Mathemtiµcki, 2010, 45(65), 139-153.
  • Mursaleen M. Matrix transformation between some new sequence spaces. Houston J.Math., , 9, 505-509. Mursaleen M. On some new invariant matrix methods of summability. Quart.J. Math. Oxford, 1983, 34(2), 77-86.
  • Raimi R.A. Invariant means and invariant matrix method of summmability. Duke Math. J., ,30, 81-94. Savas E. and Patterson R.F. Some double sequence spaces de…ned and its applications. J.Mathematical Analysis and its Applications, 2006, 324(1), 525-531.
  • Schfer P. In…nite matrices and invariant means. Proc. Amer. Math. Soc., 1972, 36, 104-110.
  • Wilansky A. Summability through functional analysis. North-Holland Mathematical Studies, , 85. Current address : Department of Mathematics, A.M.U. Aligarh-202002 INDIA
  • E-mail address : vakhan@math.com, sabihatabassum@math.com, URL: http://communications.science.ankara.edu.tr
Year 2011, Volume: 60 Issue: 2, 11 - 21, 01.08.2011
https://doi.org/10.1501/Commua1_0000000672

Abstract

References

  • Ahmad Z.U.and Mursaleen M. An application of banach limits. Proc. Amer. Math. Soc., ,103, 244-246. Çacan C.,Altay and Mursaeen. The Math. Lett., 2006,19, 1122-1128. convergence and core of doube sequences. Appl.
  • Khan V.A. On a new sequence spaces de…ned by Musielak Orlicz Functions. Studia Math., , LV-2, 143-149. Khan V.A. Quasi almost convergence in a normed space for double sequences. Thai J.Math., , 8(1), 227-231. Khan V.A. On a new sequence space de…ned by Orlicz Functions. Commun. Fac. Sci. Univ. Ank. Series Al, 2008, 57(2), 25-33.
  • Khan V.A. On a new sequence space related to the Orlicz sequence space. J. Mathematics and its applications, 2008, 30, 61-69.
  • Khan V.A. On Riesz-Musielak Orlicz sequence spaces. Numerical Functional Analysis and Optimization, 2007, 28(7-8), 883-895.
  • Khan V.A. and Lohani Q.M.D. Statistically Pre-Cauchy sequence and Orlicz Functions. Southeast Asian Bull.Math.,2007, 31, 1107-1112.
  • Lindenstrauss J. and Tza…ri L. On Orlicz Sequence Spaces. Israel J.Math., 1971, 10, 379-390.
  • Lorentz G.G. A contribution to the theory of divergent series. Acta Math., 1948,80, 167-190.
  • Moricz F. and Rhoades B.E. Almost Convergence of double sequences and strong regularity of summability matrices. Math.Proc.Camb.Phil.Soc., 1987, 104, 283-294.
  • Mursaleen M. and Mohiuddine S.A. Some new double sequences of invariant-means. Glasnik Mathemtiµcki, 2010, 45(65), 139-153.
  • Mursaleen M. Matrix transformation between some new sequence spaces. Houston J.Math., , 9, 505-509. Mursaleen M. On some new invariant matrix methods of summability. Quart.J. Math. Oxford, 1983, 34(2), 77-86.
  • Raimi R.A. Invariant means and invariant matrix method of summmability. Duke Math. J., ,30, 81-94. Savas E. and Patterson R.F. Some double sequence spaces de…ned and its applications. J.Mathematical Analysis and its Applications, 2006, 324(1), 525-531.
  • Schfer P. In…nite matrices and invariant means. Proc. Amer. Math. Soc., 1972, 36, 104-110.
  • Wilansky A. Summability through functional analysis. North-Holland Mathematical Studies, , 85. Current address : Department of Mathematics, A.M.U. Aligarh-202002 INDIA
  • E-mail address : vakhan@math.com, sabihatabassum@math.com, URL: http://communications.science.ankara.edu.tr
There are 14 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

A. Khan Vakeel This is me

Sabiha Tabassum This is me

Publication Date August 1, 2011
Published in Issue Year 2011 Volume: 60 Issue: 2

Cite

APA Khan Vakeel, A., & Tabassum, S. (2011). and ON SOME NEW DOUBLE SEQUENCE SPACES OF INVARIANT MEANS DEFINED BY ORLICZ FUNCTIONS and VAKEEL A. KHAN AND SABIHA TABASSUM. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 60(2), 11-21. https://doi.org/10.1501/Commua1_0000000672
AMA Khan Vakeel A, Tabassum S. and ON SOME NEW DOUBLE SEQUENCE SPACES OF INVARIANT MEANS DEFINED BY ORLICZ FUNCTIONS and VAKEEL A. KHAN AND SABIHA TABASSUM. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2011;60(2):11-21. doi:10.1501/Commua1_0000000672
Chicago Khan Vakeel, A., and Sabiha Tabassum. “and ON SOME NEW DOUBLE SEQUENCE SPACES OF INVARIANT MEANS DEFINED BY ORLICZ FUNCTIONS and VAKEEL A. KHAN AND SABIHA TABASSUM”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 60, no. 2 (August 2011): 11-21. https://doi.org/10.1501/Commua1_0000000672.
EndNote Khan Vakeel A, Tabassum S (August 1, 2011) and ON SOME NEW DOUBLE SEQUENCE SPACES OF INVARIANT MEANS DEFINED BY ORLICZ FUNCTIONS and VAKEEL A. KHAN AND SABIHA TABASSUM. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 60 2 11–21.
IEEE A. Khan Vakeel and S. Tabassum, “and ON SOME NEW DOUBLE SEQUENCE SPACES OF INVARIANT MEANS DEFINED BY ORLICZ FUNCTIONS and VAKEEL A. KHAN AND SABIHA TABASSUM”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 60, no. 2, pp. 11–21, 2011, doi: 10.1501/Commua1_0000000672.
ISNAD Khan Vakeel, A. - Tabassum, Sabiha. “and ON SOME NEW DOUBLE SEQUENCE SPACES OF INVARIANT MEANS DEFINED BY ORLICZ FUNCTIONS and VAKEEL A. KHAN AND SABIHA TABASSUM”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 60/2 (August 2011), 11-21. https://doi.org/10.1501/Commua1_0000000672.
JAMA Khan Vakeel A, Tabassum S. and ON SOME NEW DOUBLE SEQUENCE SPACES OF INVARIANT MEANS DEFINED BY ORLICZ FUNCTIONS and VAKEEL A. KHAN AND SABIHA TABASSUM. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2011;60:11–21.
MLA Khan Vakeel, A. and Sabiha Tabassum. “and ON SOME NEW DOUBLE SEQUENCE SPACES OF INVARIANT MEANS DEFINED BY ORLICZ FUNCTIONS and VAKEEL A. KHAN AND SABIHA TABASSUM”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 60, no. 2, 2011, pp. 11-21, doi:10.1501/Commua1_0000000672.
Vancouver Khan Vakeel A, Tabassum S. and ON SOME NEW DOUBLE SEQUENCE SPACES OF INVARIANT MEANS DEFINED BY ORLICZ FUNCTIONS and VAKEEL A. KHAN AND SABIHA TABASSUM. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2011;60(2):11-2.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.