BibTex RIS Cite

GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21

Year 2014, Volume: 63 Issue: 2, 13 - 21, 01.08.2014
https://doi.org/10.1501/Commua1_0000000708

References

  • [1] S. Anco, R. Wald, Does there exist a sensible quantum theory of an algebra valued scalar Öeld, Phys. Rev. D 39 (1989), 2297-2307.
  • [2] M. Berz, Automatic di§erentiation as nonarchimedean analysis, Eds. L. Atanassova and J. Herzberger, Elsevier Publishers North Holland, Amsterdam. (1992).
  • [3] H. Cheng, S. Thompson, In Proc. of the 1996 ASME Design Engineering Technical Conference, Irvine, California, ASME Publication, (1996).
  • [4] H.H. Cheng, Engineering with Comp., 10(1994), 212.
  • [5] W.K. Cli§ord, Preliminary sketch of bi-quaternions, Proc. of London Math. Soc. 4 n. 64, 65 (1873) , 361-395.
  • [6] C. Cutler, R. Wald, Class. Quant. Gravit. 4,(1987), 1267.
  • [7] J. R. Dooley, J.M. McCarthy, Spatial Rigid body Dynamics Using Dual quaternions componenets, Proc. Of IEEE International Conf. On Robotics and Automation, vol. 1, Sacremanto, CA, (1991), 90-95.
  • [8] D. Gans, Transformations and Geometries, Appleton-century-crofts, Newyork/Educational Division Meredith Corporation, 1969.
  • [9] N.A. Gromov, Contractions and analytical continuations of classical groups, Komi Science Center, Syktyvkar, Russia. (1990).
  • [10] N. A. Gromov, The matrix quantum unitary Cayley-Klein groups, J. Phys. A: Math. Gen., 26,(1993). L5-L8.
  • [11] N. A. Gromov, I.V. Kostyakov, V.V. Kuratov, Quantum orthogonal Caley-Klein groups and algebras, WigSym5, Vienna, Austria, (1997), 25-29.
  • [12] H. Kabadayi, Y. Yayli, General Boosts in Lorentzian Plane E2 1 , Journal of Dynamical Systems & Geometric Theories, Vol. 9, Number 1 (2011), 1-9.
  • [13] A.P. Koltelnikov, Screw calculus and some of its applications in geometry and mechanics, Kazan, (Russian), (1895)
  • [14] S. Li, Q.J. Ge, Rational Bezier Line Symmetric Motions, ASME J. of Mechanical Design, 127 (2)(2005), 222-226.
  • [15] B. Oíneill, Semii-Riemannian Geometry with applications to relativity, Academic Press. Inc. (London) Ltd. 1983
  • [16] G. R. Pennoch, A.T. Yang, Dynamic analysis of Multi-rigid-body Open-Chain System, trans. ASME, J. Of Mechanisms, Transmissions and Automation in design, vol. 105 (1983), 28-34
  • [17] B. Ravani, Q. J. Ge, Kinematic localization for world Model calibration in o§-line Robot Programmimg using Cli§ord algebras, Proc. Of IEEE International conf. On robotics and Automation vol. 1. Sacremanto, CA.,(1991), 584-589
  • [18] E. Study, Geometrie der Dynamen, Leipzig. (1903).
  • [19] R. Wald, . Class. Quant. Gravit. 4 (1987), 1279.
  • [20] I. M. Yaglom, A simple non-Euclidean geometry and its physical basis, Springer-Verlag, NewYork. (1979).
Year 2014, Volume: 63 Issue: 2, 13 - 21, 01.08.2014
https://doi.org/10.1501/Commua1_0000000708

References

  • [1] S. Anco, R. Wald, Does there exist a sensible quantum theory of an algebra valued scalar Öeld, Phys. Rev. D 39 (1989), 2297-2307.
  • [2] M. Berz, Automatic di§erentiation as nonarchimedean analysis, Eds. L. Atanassova and J. Herzberger, Elsevier Publishers North Holland, Amsterdam. (1992).
  • [3] H. Cheng, S. Thompson, In Proc. of the 1996 ASME Design Engineering Technical Conference, Irvine, California, ASME Publication, (1996).
  • [4] H.H. Cheng, Engineering with Comp., 10(1994), 212.
  • [5] W.K. Cli§ord, Preliminary sketch of bi-quaternions, Proc. of London Math. Soc. 4 n. 64, 65 (1873) , 361-395.
  • [6] C. Cutler, R. Wald, Class. Quant. Gravit. 4,(1987), 1267.
  • [7] J. R. Dooley, J.M. McCarthy, Spatial Rigid body Dynamics Using Dual quaternions componenets, Proc. Of IEEE International Conf. On Robotics and Automation, vol. 1, Sacremanto, CA, (1991), 90-95.
  • [8] D. Gans, Transformations and Geometries, Appleton-century-crofts, Newyork/Educational Division Meredith Corporation, 1969.
  • [9] N.A. Gromov, Contractions and analytical continuations of classical groups, Komi Science Center, Syktyvkar, Russia. (1990).
  • [10] N. A. Gromov, The matrix quantum unitary Cayley-Klein groups, J. Phys. A: Math. Gen., 26,(1993). L5-L8.
  • [11] N. A. Gromov, I.V. Kostyakov, V.V. Kuratov, Quantum orthogonal Caley-Klein groups and algebras, WigSym5, Vienna, Austria, (1997), 25-29.
  • [12] H. Kabadayi, Y. Yayli, General Boosts in Lorentzian Plane E2 1 , Journal of Dynamical Systems & Geometric Theories, Vol. 9, Number 1 (2011), 1-9.
  • [13] A.P. Koltelnikov, Screw calculus and some of its applications in geometry and mechanics, Kazan, (Russian), (1895)
  • [14] S. Li, Q.J. Ge, Rational Bezier Line Symmetric Motions, ASME J. of Mechanical Design, 127 (2)(2005), 222-226.
  • [15] B. Oíneill, Semii-Riemannian Geometry with applications to relativity, Academic Press. Inc. (London) Ltd. 1983
  • [16] G. R. Pennoch, A.T. Yang, Dynamic analysis of Multi-rigid-body Open-Chain System, trans. ASME, J. Of Mechanisms, Transmissions and Automation in design, vol. 105 (1983), 28-34
  • [17] B. Ravani, Q. J. Ge, Kinematic localization for world Model calibration in o§-line Robot Programmimg using Cli§ord algebras, Proc. Of IEEE International conf. On robotics and Automation vol. 1. Sacremanto, CA.,(1991), 584-589
  • [18] E. Study, Geometrie der Dynamen, Leipzig. (1903).
  • [19] R. Wald, . Class. Quant. Gravit. 4 (1987), 1279.
  • [20] I. M. Yaglom, A simple non-Euclidean geometry and its physical basis, Springer-Verlag, NewYork. (1979).
There are 20 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Hesna Kabadayı This is me

Publication Date August 1, 2014
Published in Issue Year 2014 Volume: 63 Issue: 2

Cite

APA Kabadayı, H. (2014). GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 63(2), 13-21. https://doi.org/10.1501/Commua1_0000000708
AMA Kabadayı H. GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2014;63(2):13-21. doi:10.1501/Commua1_0000000708
Chicago Kabadayı, Hesna. “GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 63, no. 2 (August 2014): 13-21. https://doi.org/10.1501/Commua1_0000000708.
EndNote Kabadayı H (August 1, 2014) GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 63 2 13–21.
IEEE H. Kabadayı, “GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 63, no. 2, pp. 13–21, 2014, doi: 10.1501/Commua1_0000000708.
ISNAD Kabadayı, Hesna. “GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 63/2 (August 2014), 13-21. https://doi.org/10.1501/Commua1_0000000708.
JAMA Kabadayı H. GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2014;63:13–21.
MLA Kabadayı, Hesna. “GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 63, no. 2, 2014, pp. 13-21, doi:10.1501/Commua1_0000000708.
Vancouver Kabadayı H. GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2014;63(2):13-21.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.