[1] S. Anco, R. Wald, Does there exist a sensible quantum theory of an algebra valued scalar Öeld, Phys. Rev. D 39 (1989), 2297-2307.
[2] M. Berz, Automatic di§erentiation as nonarchimedean analysis, Eds. L. Atanassova and J. Herzberger, Elsevier Publishers North Holland, Amsterdam. (1992).
[3] H. Cheng, S. Thompson, In Proc. of the 1996 ASME Design Engineering Technical Conference, Irvine, California, ASME Publication, (1996).
[4] H.H. Cheng, Engineering with Comp., 10(1994), 212.
[5] W.K. Cli§ord, Preliminary sketch of bi-quaternions, Proc. of London Math. Soc. 4 n. 64, 65 (1873) , 361-395.
[6] C. Cutler, R. Wald, Class. Quant. Gravit. 4,(1987), 1267.
[7] J. R. Dooley, J.M. McCarthy, Spatial Rigid body Dynamics Using Dual quaternions componenets, Proc. Of IEEE International Conf. On Robotics and Automation, vol. 1, Sacremanto, CA, (1991), 90-95.
[8] D. Gans, Transformations and Geometries, Appleton-century-crofts, Newyork/Educational Division Meredith Corporation, 1969.
[9] N.A. Gromov, Contractions and analytical continuations of classical groups, Komi Science Center, Syktyvkar, Russia. (1990).
[10] N. A. Gromov, The matrix quantum unitary Cayley-Klein groups, J. Phys. A: Math. Gen., 26,(1993). L5-L8.
[11] N. A. Gromov, I.V. Kostyakov, V.V. Kuratov, Quantum orthogonal Caley-Klein groups and algebras, WigSym5, Vienna, Austria, (1997), 25-29.
[12] H. Kabadayi, Y. Yayli, General Boosts in Lorentzian Plane E2 1 , Journal of Dynamical Systems & Geometric Theories, Vol. 9, Number 1 (2011), 1-9.
[13] A.P. Koltelnikov, Screw calculus and some of its applications in geometry and mechanics, Kazan, (Russian), (1895)
[14] S. Li, Q.J. Ge, Rational Bezier Line Symmetric Motions, ASME J. of Mechanical Design, 127 (2)(2005), 222-226.
[15] B. Oíneill, Semii-Riemannian Geometry with applications to relativity, Academic Press. Inc. (London) Ltd. 1983
[16] G. R. Pennoch, A.T. Yang, Dynamic analysis of Multi-rigid-body Open-Chain System, trans. ASME, J. Of Mechanisms, Transmissions and Automation in design, vol. 105 (1983), 28-34
[17] B. Ravani, Q. J. Ge, Kinematic localization for world Model calibration in o§-line Robot Programmimg using Cli§ord algebras, Proc. Of IEEE International conf. On robotics and Automation vol. 1. Sacremanto, CA.,(1991), 584-589
[18] E. Study, Geometrie der Dynamen, Leipzig. (1903).
[19] R. Wald, . Class. Quant. Gravit. 4 (1987), 1279.
[20] I. M. Yaglom, A simple non-Euclidean geometry and its physical basis, Springer-Verlag, NewYork. (1979).
Year 2014,
Volume: 63 Issue: 2, 13 - 21, 01.08.2014
[1] S. Anco, R. Wald, Does there exist a sensible quantum theory of an algebra valued scalar Öeld, Phys. Rev. D 39 (1989), 2297-2307.
[2] M. Berz, Automatic di§erentiation as nonarchimedean analysis, Eds. L. Atanassova and J. Herzberger, Elsevier Publishers North Holland, Amsterdam. (1992).
[3] H. Cheng, S. Thompson, In Proc. of the 1996 ASME Design Engineering Technical Conference, Irvine, California, ASME Publication, (1996).
[4] H.H. Cheng, Engineering with Comp., 10(1994), 212.
[5] W.K. Cli§ord, Preliminary sketch of bi-quaternions, Proc. of London Math. Soc. 4 n. 64, 65 (1873) , 361-395.
[6] C. Cutler, R. Wald, Class. Quant. Gravit. 4,(1987), 1267.
[7] J. R. Dooley, J.M. McCarthy, Spatial Rigid body Dynamics Using Dual quaternions componenets, Proc. Of IEEE International Conf. On Robotics and Automation, vol. 1, Sacremanto, CA, (1991), 90-95.
[8] D. Gans, Transformations and Geometries, Appleton-century-crofts, Newyork/Educational Division Meredith Corporation, 1969.
[9] N.A. Gromov, Contractions and analytical continuations of classical groups, Komi Science Center, Syktyvkar, Russia. (1990).
[10] N. A. Gromov, The matrix quantum unitary Cayley-Klein groups, J. Phys. A: Math. Gen., 26,(1993). L5-L8.
[11] N. A. Gromov, I.V. Kostyakov, V.V. Kuratov, Quantum orthogonal Caley-Klein groups and algebras, WigSym5, Vienna, Austria, (1997), 25-29.
[12] H. Kabadayi, Y. Yayli, General Boosts in Lorentzian Plane E2 1 , Journal of Dynamical Systems & Geometric Theories, Vol. 9, Number 1 (2011), 1-9.
[13] A.P. Koltelnikov, Screw calculus and some of its applications in geometry and mechanics, Kazan, (Russian), (1895)
[14] S. Li, Q.J. Ge, Rational Bezier Line Symmetric Motions, ASME J. of Mechanical Design, 127 (2)(2005), 222-226.
[15] B. Oíneill, Semii-Riemannian Geometry with applications to relativity, Academic Press. Inc. (London) Ltd. 1983
[16] G. R. Pennoch, A.T. Yang, Dynamic analysis of Multi-rigid-body Open-Chain System, trans. ASME, J. Of Mechanisms, Transmissions and Automation in design, vol. 105 (1983), 28-34
[17] B. Ravani, Q. J. Ge, Kinematic localization for world Model calibration in o§-line Robot Programmimg using Cli§ord algebras, Proc. Of IEEE International conf. On robotics and Automation vol. 1. Sacremanto, CA.,(1991), 584-589
[18] E. Study, Geometrie der Dynamen, Leipzig. (1903).
[19] R. Wald, . Class. Quant. Gravit. 4 (1987), 1279.
[20] I. M. Yaglom, A simple non-Euclidean geometry and its physical basis, Springer-Verlag, NewYork. (1979).
Kabadayı, H. (2014). GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 63(2), 13-21. https://doi.org/10.1501/Commua1_0000000708
AMA
Kabadayı H. GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2014;63(2):13-21. doi:10.1501/Commua1_0000000708
Chicago
Kabadayı, Hesna. “GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 63, no. 2 (August 2014): 13-21. https://doi.org/10.1501/Commua1_0000000708.
EndNote
Kabadayı H (August 1, 2014) GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 63 2 13–21.
IEEE
H. Kabadayı, “GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 63, no. 2, pp. 13–21, 2014, doi: 10.1501/Commua1_0000000708.
ISNAD
Kabadayı, Hesna. “GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 63/2 (August 2014), 13-21. https://doi.org/10.1501/Commua1_0000000708.
JAMA
Kabadayı H. GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2014;63:13–21.
MLA
Kabadayı, Hesna. “GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 63, no. 2, 2014, pp. 13-21, doi:10.1501/Commua1_0000000708.
Vancouver
Kabadayı H. GENERAL DUAL BOOSTS IN LORENTZIAN DUAL PLANE D21. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2014;63(2):13-21.