BibTex RIS Cite

Modified q_Baskakov operators

Year 2016, Volume: 65 Issue: 1, 1 - 10, 01.02.2016
https://doi.org/10.1501/Commua1_0000000739

References

  • Altomare, F. and Mangino, E. M. 1999. On a generalization of Baskakov operator, Rev.
  • Roumaine Math. Pures Appl. 44, 683–705. Aral, A. Acar, T. 2012. Voronovskaja type result for q derivative of q Baskakov operators.
  • Journal of Applied Functional Analysis, vol. 7(4), 321-331. Aral, A. Gupta, V. 2009. On q Baskakov type operators, Demonstratio Math. 42 (1), 109–
  • Aral, A. Gupta, V. 2011. Generalized q Baskakov operators, Math. Slovaca 61 (4), 619–634.
  • Aral, A., Inoan, D. and Ra¸sa, I. 2014. On the generalized Szász-Mirakyan operators. Resulr in Mathematics. 65, 441-452.
  • Atakut, Ç. 1997. On the approximation of functions together with derivatives by certain linear positive operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 46 (1 2) 57–65.
  • Baskakov, V. A. 1957. An example of a sequence of linear positive operators in the spaces of continuous functions, Doklady Akademii Nauk SSSR 112, 249–251.
  • Cao, F. , Ding, C. and Xu, Z. 2005. On multivariate Baskakov operator, J. Math. Anal. Appl. no. 1, 274–291
  • Cárdenas-Moreles, D. Garrancho, P., Ra¸sa, I.: 2011. Berstein-type operators which preserve polynomials. Compt. Math. Appl. 62, 158-163.
  • Ernst, T. 2000.The history of q calculus and a new method, U.U.U.D.M Report 2000, 16
  • ISSN 1101-3591, Department of Mathematics, Upsala University.
  • Finta, Z. Gupta, V. 2010. Approximation properties of q Baskakov operators, Cent. Eur. J. Math. 8(1), 199-211.
  • Gadjiev, A. D. 1974. The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogues to that of P. P. Korovkin. Dokl. Akad. Nauk SSSR , 1001-1004. Also in Soviet Math. Dokl. 15, 1433-1436.
  • Gadjiev, A. D. 1976. Theorems of the type of P. P. Korovkin’s theorems (in Russian), Math.
  • Z. 205, 781-786, translated in Maths Notes, 20 (5-6), 995-998 (1977).
  • Holho¸s, A. 2008. Quantitative estimates for positive linear operators in weighted space. Gen. Math. 16(4), 99-110.
  • ·Ispir N., 2001. On Modi…ed Baskakov Operators on Weighted Spaces. Turkish Journal of Mathematics, 25, No:3 (355-365).
  • Pethe, S. 1984. On the Baskakov operator, Indian J. Math. 26, No. 1–3, 43–48 (1985).
  • Phillips, G. M. 2003. Interpolation and approximation by polynomials. CMS Books in Math- ematics/Ouvrages de Mathématiques de la SMC, 14. Springer-Verlag, New York.
  • Current address : Ankara University, Elmadag Vocational School, Department of Computer Programming, 06780, Ankara, Turkey
  • E-mail address : dsoylemez@ankara.edu.tr
Year 2016, Volume: 65 Issue: 1, 1 - 10, 01.02.2016
https://doi.org/10.1501/Commua1_0000000739

References

  • Altomare, F. and Mangino, E. M. 1999. On a generalization of Baskakov operator, Rev.
  • Roumaine Math. Pures Appl. 44, 683–705. Aral, A. Acar, T. 2012. Voronovskaja type result for q derivative of q Baskakov operators.
  • Journal of Applied Functional Analysis, vol. 7(4), 321-331. Aral, A. Gupta, V. 2009. On q Baskakov type operators, Demonstratio Math. 42 (1), 109–
  • Aral, A. Gupta, V. 2011. Generalized q Baskakov operators, Math. Slovaca 61 (4), 619–634.
  • Aral, A., Inoan, D. and Ra¸sa, I. 2014. On the generalized Szász-Mirakyan operators. Resulr in Mathematics. 65, 441-452.
  • Atakut, Ç. 1997. On the approximation of functions together with derivatives by certain linear positive operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 46 (1 2) 57–65.
  • Baskakov, V. A. 1957. An example of a sequence of linear positive operators in the spaces of continuous functions, Doklady Akademii Nauk SSSR 112, 249–251.
  • Cao, F. , Ding, C. and Xu, Z. 2005. On multivariate Baskakov operator, J. Math. Anal. Appl. no. 1, 274–291
  • Cárdenas-Moreles, D. Garrancho, P., Ra¸sa, I.: 2011. Berstein-type operators which preserve polynomials. Compt. Math. Appl. 62, 158-163.
  • Ernst, T. 2000.The history of q calculus and a new method, U.U.U.D.M Report 2000, 16
  • ISSN 1101-3591, Department of Mathematics, Upsala University.
  • Finta, Z. Gupta, V. 2010. Approximation properties of q Baskakov operators, Cent. Eur. J. Math. 8(1), 199-211.
  • Gadjiev, A. D. 1974. The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogues to that of P. P. Korovkin. Dokl. Akad. Nauk SSSR , 1001-1004. Also in Soviet Math. Dokl. 15, 1433-1436.
  • Gadjiev, A. D. 1976. Theorems of the type of P. P. Korovkin’s theorems (in Russian), Math.
  • Z. 205, 781-786, translated in Maths Notes, 20 (5-6), 995-998 (1977).
  • Holho¸s, A. 2008. Quantitative estimates for positive linear operators in weighted space. Gen. Math. 16(4), 99-110.
  • ·Ispir N., 2001. On Modi…ed Baskakov Operators on Weighted Spaces. Turkish Journal of Mathematics, 25, No:3 (355-365).
  • Pethe, S. 1984. On the Baskakov operator, Indian J. Math. 26, No. 1–3, 43–48 (1985).
  • Phillips, G. M. 2003. Interpolation and approximation by polynomials. CMS Books in Math- ematics/Ouvrages de Mathématiques de la SMC, 14. Springer-Verlag, New York.
  • Current address : Ankara University, Elmadag Vocational School, Department of Computer Programming, 06780, Ankara, Turkey
  • E-mail address : dsoylemez@ankara.edu.tr
There are 21 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Dilek Söylemez This is me

Publication Date February 1, 2016
Published in Issue Year 2016 Volume: 65 Issue: 1

Cite

APA Söylemez, D. (2016). Modified q_Baskakov operators. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 65(1), 1-10. https://doi.org/10.1501/Commua1_0000000739
AMA Söylemez D. Modified q_Baskakov operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2016;65(1):1-10. doi:10.1501/Commua1_0000000739
Chicago Söylemez, Dilek. “Modified q_Baskakov Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65, no. 1 (February 2016): 1-10. https://doi.org/10.1501/Commua1_0000000739.
EndNote Söylemez D (February 1, 2016) Modified q_Baskakov operators. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65 1 1–10.
IEEE D. Söylemez, “Modified q_Baskakov operators”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 65, no. 1, pp. 1–10, 2016, doi: 10.1501/Commua1_0000000739.
ISNAD Söylemez, Dilek. “Modified q_Baskakov Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65/1 (February 2016), 1-10. https://doi.org/10.1501/Commua1_0000000739.
JAMA Söylemez D. Modified q_Baskakov operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65:1–10.
MLA Söylemez, Dilek. “Modified q_Baskakov Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 65, no. 1, 2016, pp. 1-10, doi:10.1501/Commua1_0000000739.
Vancouver Söylemez D. Modified q_Baskakov operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65(1):1-10.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.