Research Article
BibTex RIS Cite
Year 2016, Volume: 65 Issue: 1, 19 - 34, 01.02.2016
https://doi.org/10.1501/Commua1_0000000741

Abstract

References

  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.
  • R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra, 319(8)(2008), 3128-3140.
  • W. Chen, On nil-semicommutative rings, Thai J. Math., 9(1)(2011), 39-47.
  • P. M. Cohn, Reversible rings, Bull. London Math. Soc., 31(6)(1999), 641-648.
  • N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra, 185(2003), 223.
  • T. K. Kwak and Y. Lee, Re*exive property of rings, Comm. Algebra, 40(2012), 1576-1594.
  • T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 2001.
  • J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull., 14(1971), 359-368.
  • G. Mason, Re*exive ideals, Comm. Algebra, 9(17)(1981), 1709-1724.
  • R. Mohammadi, A. Moussavi and M. Zahiri, On nil-semicommutative rings, Int. Electron. J. Algebra, 11(2012), 20-37.
  • M. Nagata, Local Rings, Interscience, New York, 1962.
  • M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci., (1)(1997), 14-17.
  • L. Zhao, X. Zhu and Q. Gu, Re*exive rings and their extensions, Math. Slovaca, 63(3)(2013), 430.

NIL-REFLEXIVE RINGS

Year 2016, Volume: 65 Issue: 1, 19 - 34, 01.02.2016
https://doi.org/10.1501/Commua1_0000000741

Abstract

In this paper, we deal with a new approach to reflexive property
for rings by using nilpotent elements, in this direction we introduce nil-reflexive
rings. It is shown that the notion of nil-reflexive is a generalization of that
of nil-semicommutativity. Examples are given to show that nil-reflexive rings
need not be reflexive and vice versa, and nil-reflexive rings but not semicommutative are presented. We also proved that every ring with identity is weakly
reflexive defined by Zhao, Zhu and Gu. Moreover, we investigate basic properties of nil-reflexive rings and provide some source of examples for this class
of rings. We consider some extensions of nil-reflexive rings, such as trivial
extensions, polynomial extensions and Nagata extensions.

References

  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.
  • R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra, 319(8)(2008), 3128-3140.
  • W. Chen, On nil-semicommutative rings, Thai J. Math., 9(1)(2011), 39-47.
  • P. M. Cohn, Reversible rings, Bull. London Math. Soc., 31(6)(1999), 641-648.
  • N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra, 185(2003), 223.
  • T. K. Kwak and Y. Lee, Re*exive property of rings, Comm. Algebra, 40(2012), 1576-1594.
  • T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 2001.
  • J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull., 14(1971), 359-368.
  • G. Mason, Re*exive ideals, Comm. Algebra, 9(17)(1981), 1709-1724.
  • R. Mohammadi, A. Moussavi and M. Zahiri, On nil-semicommutative rings, Int. Electron. J. Algebra, 11(2012), 20-37.
  • M. Nagata, Local Rings, Interscience, New York, 1962.
  • M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci., (1)(1997), 14-17.
  • L. Zhao, X. Zhu and Q. Gu, Re*exive rings and their extensions, Math. Slovaca, 63(3)(2013), 430.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Handan Kose This is me

Burcu Ungor This is me

Abdullah Harmancı This is me

Publication Date February 1, 2016
Submission Date February 26, 2015
Published in Issue Year 2016 Volume: 65 Issue: 1

Cite

APA Kose, H., Ungor, B., & Harmancı, A. (2016). NIL-REFLEXIVE RINGS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 65(1), 19-34. https://doi.org/10.1501/Commua1_0000000741
AMA Kose H, Ungor B, Harmancı A. NIL-REFLEXIVE RINGS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2016;65(1):19-34. doi:10.1501/Commua1_0000000741
Chicago Kose, Handan, Burcu Ungor, and Abdullah Harmancı. “NIL-REFLEXIVE RINGS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65, no. 1 (February 2016): 19-34. https://doi.org/10.1501/Commua1_0000000741.
EndNote Kose H, Ungor B, Harmancı A (February 1, 2016) NIL-REFLEXIVE RINGS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65 1 19–34.
IEEE H. Kose, B. Ungor, and A. Harmancı, “NIL-REFLEXIVE RINGS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 65, no. 1, pp. 19–34, 2016, doi: 10.1501/Commua1_0000000741.
ISNAD Kose, Handan et al. “NIL-REFLEXIVE RINGS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65/1 (February 2016), 19-34. https://doi.org/10.1501/Commua1_0000000741.
JAMA Kose H, Ungor B, Harmancı A. NIL-REFLEXIVE RINGS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65:19–34.
MLA Kose, Handan et al. “NIL-REFLEXIVE RINGS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 65, no. 1, 2016, pp. 19-34, doi:10.1501/Commua1_0000000741.
Vancouver Kose H, Ungor B, Harmancı A. NIL-REFLEXIVE RINGS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65(1):19-34.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.