BibTex RIS Cite

A WEAKER FORM OF CONNECTEDNESS

Year 2016, Volume: 65 Issue: 1, 49 - 52, 01.02.2016
https://doi.org/10.1501/Commua1_0000000743

Abstract

In this paper, we introduce the notion of Cland Clanalogous to these of connectedness. We show that Clpreserved under continuous functions

References

  • Mrševi´c, M., Andrijevi´c, D.: On tions, 123, 157 - 166 (2002) - connectedness and closure, Topology and its Applica
  • Veliµcko, N. V., H - closed topological spaces, Mat. Sb. 70, 98 - 112 (1966); Math. USSR Sb. 78, 103 - 118 (1969)
  • Veliµcko, N. V., On the theory of H - closed topological spaces, Sibirskii Math. Z. 8, 754 - 763 (1967); Siberian Math J. 8, 569 - 579 (1967)
  • Willard, S., General Topology, Addison-Wesley Publ. Comp., (1970) Current address : S. Modak, Department of Mathematics, University of Gour Banga P.O.
  • Mokdumpur, Malda - 732103, India E-mail address : spmodak2000@yahoo.co.in Current address : T. Noiri, 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumomoto-ken, 869- 5142 JAPAN E-mail address : t.noiri@nifty.com
Year 2016, Volume: 65 Issue: 1, 49 - 52, 01.02.2016
https://doi.org/10.1501/Commua1_0000000743

Abstract

References

  • Mrševi´c, M., Andrijevi´c, D.: On tions, 123, 157 - 166 (2002) - connectedness and closure, Topology and its Applica
  • Veliµcko, N. V., H - closed topological spaces, Mat. Sb. 70, 98 - 112 (1966); Math. USSR Sb. 78, 103 - 118 (1969)
  • Veliµcko, N. V., On the theory of H - closed topological spaces, Sibirskii Math. Z. 8, 754 - 763 (1967); Siberian Math J. 8, 569 - 579 (1967)
  • Willard, S., General Topology, Addison-Wesley Publ. Comp., (1970) Current address : S. Modak, Department of Mathematics, University of Gour Banga P.O.
  • Mokdumpur, Malda - 732103, India E-mail address : spmodak2000@yahoo.co.in Current address : T. Noiri, 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumomoto-ken, 869- 5142 JAPAN E-mail address : t.noiri@nifty.com
There are 5 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

S. Modak This is me

T. Noırı This is me

Publication Date February 1, 2016
Published in Issue Year 2016 Volume: 65 Issue: 1

Cite

APA Modak, S., & Noırı, T. (2016). A WEAKER FORM OF CONNECTEDNESS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 65(1), 49-52. https://doi.org/10.1501/Commua1_0000000743
AMA Modak S, Noırı T. A WEAKER FORM OF CONNECTEDNESS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2016;65(1):49-52. doi:10.1501/Commua1_0000000743
Chicago Modak, S., and T. Noırı. “A WEAKER FORM OF CONNECTEDNESS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65, no. 1 (February 2016): 49-52. https://doi.org/10.1501/Commua1_0000000743.
EndNote Modak S, Noırı T (February 1, 2016) A WEAKER FORM OF CONNECTEDNESS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65 1 49–52.
IEEE S. Modak and T. Noırı, “A WEAKER FORM OF CONNECTEDNESS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 65, no. 1, pp. 49–52, 2016, doi: 10.1501/Commua1_0000000743.
ISNAD Modak, S. - Noırı, T. “A WEAKER FORM OF CONNECTEDNESS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65/1 (February 2016), 49-52. https://doi.org/10.1501/Commua1_0000000743.
JAMA Modak S, Noırı T. A WEAKER FORM OF CONNECTEDNESS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65:49–52.
MLA Modak, S. and T. Noırı. “A WEAKER FORM OF CONNECTEDNESS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 65, no. 1, 2016, pp. 49-52, doi:10.1501/Commua1_0000000743.
Vancouver Modak S, Noırı T. A WEAKER FORM OF CONNECTEDNESS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65(1):49-52.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.