BibTex RIS Cite

λ almost difference sequences of fuzzy numbers

Year 2016, Volume: 65 Issue: 2, 77 - 88, 01.08.2016
https://doi.org/10.1501/Commua1_0000000761

Abstract

In this study, we introduce several sets of sequences of fuzzy numbers using various sequencesrelations among these sets.and in the classand examine some inclusion

References

  • Altin, Y. , Et, M. Basarir, M. On some generalized diğerence sequences of fuzzy numbers, Kuwait J. Sci. Engrg. 34 1A, 1–14 (2007).
  • Altinok, H., Çolak, R. and Et, M. Diğerence sequence spaces of fuzzy numbers, Fuzzy Sets and Systems 160(21), 3128-3139, (2009).
  • Altinok, H., Çolak, R. Almost lacunary statistical and strongly almost lacunary convergence of generalized diğerence sequences of fuzzy numbers, J. Fuzzy Math.17(4) 951–967, (2009), .
  • Altinok, H., Çolak, R. and Altin,Y. On the class of statistically convergent diğerence se- quences of fuzzy numbers, Soft Computing, 16 (6) 1029-1034, (2012).
  • Et, M.; Altin, Y., Altinok, H. On almost statistical convergence of generalized diğerence sequences of fuzzy numbers, Math. Model. Anal. 10(4) 345–352, (2005).
  • Ba¸sar, F. and Altay, B. On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55(1), 136–147, (2003).
  • Aytar, S. and Pehlivan, S. Statistically convergence of sequences of fuzzy numbers and se- quences of cuts, International J. General Systems 1-7, (2007).
  • Connor J.S. The statistical and strong p-Cesàro convergence of sequences, Analysis, 8, 47-63, (1988).
  • Colak, R., Altin, Y., Mursaleen M. On some sets of diğerence sequences of fuzzy numbers, Soft Computing, 15(4), 787-793, (2011). Çolak, R. On
  • Statistical Convergence, Conference on Summability and Applications, Com- merce Univ., May 12-13, 2011, Istanbul, TURKEY.
  • Çanak, ·I. Tauberian theorems for Cesàro summability of sequences of fuzzy numbers, J. Intell. Fuzzy Syst., 27 (2), 937-942, (2014).
  • Çanak, ·I. On the Riesz mean of sequences of fuzzy real numbers, J. Intell.Fuzzy Syst., 26 (6), 2688, (2014).
  • Çanak, ·I. Some conditions under which slow oscillation of a sequence of fuzzy numbers follows from Cesàro summability of its generator sequence, Iran.J. Fuzzy Syst., 11 (4) 15-22, (2014).
  • Çanak, ·I. Hölder summability method of fuzzy numbers and a Tauberian theorem, Iran. J. Fuzzy Syst., 11 (4) 87-93, (2014).
  • Das, N. R.; Choudhury, Ajanta. Boundedness of fuzzy real-valued sequences, Bull. Calcutta Math. Soc. 90 (1) 35–44, (1998).
  • Diamond, P. and Kloeden, P. Metric spaces of fuzzy sets, Fuzzy Sets and Systems 35 (2) 249, (1990).
  • Et, M. and Çolak, R. On some generalized diğerence sequence spaces, Soochow J. Math. (4), 377-386, (1995).
  • Fast H. Sur la convergence statistique, Colloq. Math., 2, 241-244, (1951).
  • Fridy J. On statistical convergence, Analysis, 5, 301-313, (1985).
  • Gökhan, A. Et, M. Mursaleen, M. Almost lacunary statistical and strongly almost lacunary convergence of sequences of fuzzy numbers, Math. Comput. Modelling, 49 (3-4), 548–555, (2009).
  • Kızmaz, H. On certain sequence spaces, Canad. Math. Bull. 24(2), 169-176, (1981).
  • Kwon, J.S. On statistical and p Cesàro convergence of fuzzy numbers, Korean J. Com- put.&Appl. Math. 7 (1), 195-203, (2000).
  • Leindler L. Über die de la Vallée-Pousinsche Summierbarkeit allgemeiner Orthogonalreihen, Acta Math. Acad. Sci. Hungar., 16, 375-387, (1965).
  • Lorentz, G. G.A contribution to the theory of divergent sequences, Acta Math. 80 167- ,(1948).
  • Maddox, I. J. Spaces of Strongly Summable Sequences, Quart. J. Math. Oxford , 18(2) 345- , (1967).
  • Matloka, M. Sequences of fuzzy numbers, BUSEFAL 28, 28-37, (1986). Mursaleen, M.
  • Nuray, F. and Sava¸s, E. Statistical convergence of sequences of fuzzy real numbers, Math. Slovaca 45 (3) 269-273, (1995).
  • Önder, Z. Sezer, S. A. Çanak, ·I. A Tauberian theorem for the weighted mean method of summability of sequences of fuzzy numbers, J. Intell. Fuzzy Syst., 28, 1403-1409, (2015).
  • Šalát T. On statistically convergent sequences of real numbers, Math. Slovaca, 30, 139-150, (1980).
  • Sava¸s E. Strong almost convergence and almost statistical convergence, Hokkaido Math. Jour., 29 (3), 531-536, (2000).
  • Sava¸s, E. On strongly –186 (2000).
  • Schoenberg I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66, 361-375, (1959).
  • Sezer, S.A. and Çanak, ·I. Power series methods of summability for series of fuzzy numbers and related Tauberian theorems, Soft Comput., DOI 10.1007/s00500- 015-1840-0
  • Steinhaus H. Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2, 74, (1951).
  • Subrahmanyam, P. V. Cesàro summability for fuzzy real numbers. p-adic analysis, summa- bility theory, fuzzy analysis and applications (INCOPASFA) (Chennai, 1998). J. Anal. 7, –168, (1999).
  • Tripathy, B.C. and A.J. Dutta. On fuzzy real-valued double sequence spaces2lp, Math. F Comput. Modelling 46 (9-10), 1294-1299, (2007).
  • Tripathy, B.C. and Sarma, B. Sequences spaces of fuzzy real numbers de…ned by Orlicz functions, Math. Slovaca, 58 (5), 621-628, (2008).
  • Tripathy, B.C. and Baruah, A. Nörlund and Riesz mean of sequences of fuzzy real numbers, Appl. Math. Lett. 23 (5), 651-655, (2010).
  • Tuncer, A.N.and Babaarslan, F. Statistical limit points of order of sequences of fuzzy numbers, Positivity, 19, 385-394, (2015).
  • Zadeh, L. A. Fuzzy sets, Inform and Control, 8, 338-353, (1965).
  • Current address : Department of Mathematics, Firat University, 23119, Elazı¼g-TURKEY
  • E-mail address : yaltin23@yahoo.com
Year 2016, Volume: 65 Issue: 2, 77 - 88, 01.08.2016
https://doi.org/10.1501/Commua1_0000000761

Abstract

References

  • Altin, Y. , Et, M. Basarir, M. On some generalized diğerence sequences of fuzzy numbers, Kuwait J. Sci. Engrg. 34 1A, 1–14 (2007).
  • Altinok, H., Çolak, R. and Et, M. Diğerence sequence spaces of fuzzy numbers, Fuzzy Sets and Systems 160(21), 3128-3139, (2009).
  • Altinok, H., Çolak, R. Almost lacunary statistical and strongly almost lacunary convergence of generalized diğerence sequences of fuzzy numbers, J. Fuzzy Math.17(4) 951–967, (2009), .
  • Altinok, H., Çolak, R. and Altin,Y. On the class of statistically convergent diğerence se- quences of fuzzy numbers, Soft Computing, 16 (6) 1029-1034, (2012).
  • Et, M.; Altin, Y., Altinok, H. On almost statistical convergence of generalized diğerence sequences of fuzzy numbers, Math. Model. Anal. 10(4) 345–352, (2005).
  • Ba¸sar, F. and Altay, B. On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55(1), 136–147, (2003).
  • Aytar, S. and Pehlivan, S. Statistically convergence of sequences of fuzzy numbers and se- quences of cuts, International J. General Systems 1-7, (2007).
  • Connor J.S. The statistical and strong p-Cesàro convergence of sequences, Analysis, 8, 47-63, (1988).
  • Colak, R., Altin, Y., Mursaleen M. On some sets of diğerence sequences of fuzzy numbers, Soft Computing, 15(4), 787-793, (2011). Çolak, R. On
  • Statistical Convergence, Conference on Summability and Applications, Com- merce Univ., May 12-13, 2011, Istanbul, TURKEY.
  • Çanak, ·I. Tauberian theorems for Cesàro summability of sequences of fuzzy numbers, J. Intell. Fuzzy Syst., 27 (2), 937-942, (2014).
  • Çanak, ·I. On the Riesz mean of sequences of fuzzy real numbers, J. Intell.Fuzzy Syst., 26 (6), 2688, (2014).
  • Çanak, ·I. Some conditions under which slow oscillation of a sequence of fuzzy numbers follows from Cesàro summability of its generator sequence, Iran.J. Fuzzy Syst., 11 (4) 15-22, (2014).
  • Çanak, ·I. Hölder summability method of fuzzy numbers and a Tauberian theorem, Iran. J. Fuzzy Syst., 11 (4) 87-93, (2014).
  • Das, N. R.; Choudhury, Ajanta. Boundedness of fuzzy real-valued sequences, Bull. Calcutta Math. Soc. 90 (1) 35–44, (1998).
  • Diamond, P. and Kloeden, P. Metric spaces of fuzzy sets, Fuzzy Sets and Systems 35 (2) 249, (1990).
  • Et, M. and Çolak, R. On some generalized diğerence sequence spaces, Soochow J. Math. (4), 377-386, (1995).
  • Fast H. Sur la convergence statistique, Colloq. Math., 2, 241-244, (1951).
  • Fridy J. On statistical convergence, Analysis, 5, 301-313, (1985).
  • Gökhan, A. Et, M. Mursaleen, M. Almost lacunary statistical and strongly almost lacunary convergence of sequences of fuzzy numbers, Math. Comput. Modelling, 49 (3-4), 548–555, (2009).
  • Kızmaz, H. On certain sequence spaces, Canad. Math. Bull. 24(2), 169-176, (1981).
  • Kwon, J.S. On statistical and p Cesàro convergence of fuzzy numbers, Korean J. Com- put.&Appl. Math. 7 (1), 195-203, (2000).
  • Leindler L. Über die de la Vallée-Pousinsche Summierbarkeit allgemeiner Orthogonalreihen, Acta Math. Acad. Sci. Hungar., 16, 375-387, (1965).
  • Lorentz, G. G.A contribution to the theory of divergent sequences, Acta Math. 80 167- ,(1948).
  • Maddox, I. J. Spaces of Strongly Summable Sequences, Quart. J. Math. Oxford , 18(2) 345- , (1967).
  • Matloka, M. Sequences of fuzzy numbers, BUSEFAL 28, 28-37, (1986). Mursaleen, M.
  • Nuray, F. and Sava¸s, E. Statistical convergence of sequences of fuzzy real numbers, Math. Slovaca 45 (3) 269-273, (1995).
  • Önder, Z. Sezer, S. A. Çanak, ·I. A Tauberian theorem for the weighted mean method of summability of sequences of fuzzy numbers, J. Intell. Fuzzy Syst., 28, 1403-1409, (2015).
  • Šalát T. On statistically convergent sequences of real numbers, Math. Slovaca, 30, 139-150, (1980).
  • Sava¸s E. Strong almost convergence and almost statistical convergence, Hokkaido Math. Jour., 29 (3), 531-536, (2000).
  • Sava¸s, E. On strongly –186 (2000).
  • Schoenberg I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66, 361-375, (1959).
  • Sezer, S.A. and Çanak, ·I. Power series methods of summability for series of fuzzy numbers and related Tauberian theorems, Soft Comput., DOI 10.1007/s00500- 015-1840-0
  • Steinhaus H. Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2, 74, (1951).
  • Subrahmanyam, P. V. Cesàro summability for fuzzy real numbers. p-adic analysis, summa- bility theory, fuzzy analysis and applications (INCOPASFA) (Chennai, 1998). J. Anal. 7, –168, (1999).
  • Tripathy, B.C. and A.J. Dutta. On fuzzy real-valued double sequence spaces2lp, Math. F Comput. Modelling 46 (9-10), 1294-1299, (2007).
  • Tripathy, B.C. and Sarma, B. Sequences spaces of fuzzy real numbers de…ned by Orlicz functions, Math. Slovaca, 58 (5), 621-628, (2008).
  • Tripathy, B.C. and Baruah, A. Nörlund and Riesz mean of sequences of fuzzy real numbers, Appl. Math. Lett. 23 (5), 651-655, (2010).
  • Tuncer, A.N.and Babaarslan, F. Statistical limit points of order of sequences of fuzzy numbers, Positivity, 19, 385-394, (2015).
  • Zadeh, L. A. Fuzzy sets, Inform and Control, 8, 338-353, (1965).
  • Current address : Department of Mathematics, Firat University, 23119, Elazı¼g-TURKEY
  • E-mail address : yaltin23@yahoo.com
There are 42 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Yavuz Altın This is me

Publication Date August 1, 2016
Published in Issue Year 2016 Volume: 65 Issue: 2

Cite

APA Altın, Y. (2016). λ almost difference sequences of fuzzy numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 65(2), 77-88. https://doi.org/10.1501/Commua1_0000000761
AMA Altın Y. λ almost difference sequences of fuzzy numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2016;65(2):77-88. doi:10.1501/Commua1_0000000761
Chicago Altın, Yavuz. “λ Almost Difference Sequences of Fuzzy Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65, no. 2 (August 2016): 77-88. https://doi.org/10.1501/Commua1_0000000761.
EndNote Altın Y (August 1, 2016) λ almost difference sequences of fuzzy numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65 2 77–88.
IEEE Y. Altın, “λ almost difference sequences of fuzzy numbers”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 65, no. 2, pp. 77–88, 2016, doi: 10.1501/Commua1_0000000761.
ISNAD Altın, Yavuz. “λ Almost Difference Sequences of Fuzzy Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65/2 (August 2016), 77-88. https://doi.org/10.1501/Commua1_0000000761.
JAMA Altın Y. λ almost difference sequences of fuzzy numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65:77–88.
MLA Altın, Yavuz. “λ Almost Difference Sequences of Fuzzy Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 65, no. 2, 2016, pp. 77-88, doi:10.1501/Commua1_0000000761.
Vancouver Altın Y. λ almost difference sequences of fuzzy numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65(2):77-88.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.