BibTex RIS Cite
Year 2016, Volume: 65 Issue: 2, 189 - 205, 01.08.2016
https://doi.org/10.1501/Commua1_0000000769

Abstract

References

  • S. Adly, Perturbed algorithms and sensitivity analysis for a general class of variational in- clusions, J. Math. Anal. Appl. 201(3) (1996), 609–630.
  • R.P. Agarwal, Y.-J. Cho, N.-J. Huang, Sensitivity analysis for strongly nonlinear quasi- variational inclusions, Appl. Math. Lett. 13 (2002), 19–24.
  • R.P. Agarwal, N.-J. Huang and Y.-J. Cho, Generalized nonlinear mixed implicit quasi- variational inclusions with set-valued mappings, J. Inequal. Appl. 7(6) (2002), 807–828.
  • C.E. Chidume, K.R. Kazmi and H. Zegeye, Iterative approximation of a solution of a general variational-like inclusion in Banach spaces, Int. J. Math. Math. Sci. 22 (2004), 1159–1168. [5] S. Dafermos, Sensitivity analysis in variational inequalities, Math. Oper. Res. 13 (1998), 421–434.
  • X.-P. Ding, Sensitivity analysis for generalized nonlinear implicit quasi-variational inclu- sions, Appl. Math. Lett. 17(2) (2004), 225–235.
  • X.-P. Ding, Parametric completely generalized mixed implicit quasi-variational inclusions involving h-maximal monotone mappings, J. Comput. Appl. Math. 182(2) (2005), 252— 269. [8] X.-P. Ding and C.L. Luo, On parametric generalized quasi-variational inequalities, J. Optim. Theory Appl. 100 (1999), 195–205.
  • Y.-P. Fang and N.-J. Huang, H monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput. 145 (2003), 795–803.
  • N.-J. Huang, H.Y. Lan and Y.J. Cho, Sensitivity analysis for nonlinear generlized mixed implicit equilibrium problems with non-monotone set-valued mappings, J. Comput. Anal. Appl. 196(2) (2006), 608— 618.
  • F.A. Khan, Study of Existence of Solutions and Iterative Algorithms for Certain Classes of Variational Inequalities, Ph.D. Thesis, Aligarh Muslim University, Aligarh, India, March, 2006.
  • K.R. Kazmi and F.A. Khan, Iterative approximation of a solution of multi-valued variational- like inclusion in Banach spaces: A P - -proximal-point mapping approach, J. Math. Anal. Appl. 325 (2007), 665— 674.
  • K.R. Kazmi and F.A. Khan, Sensitivity analysis for parametric generalized implicit quasi- variational-like inclusions involving P - (2008), 1198— 1210.
  • accretive mappings, J. Math. Anal. Appl. 337 [14] K.R. Kazmi and F.A. Khan, Parametric general variational-like inequality problem in uni- formly smooth Banach spaces, Fixed Point Theory and Applications, Volume 2006, Article ID 42451, (2006) Pages 1–13, DOI 10.1155/FPTA /2006/42451.
  • T.C. Lim, On …xed point stability for set-valued contractive mappings with applications to generalized diğ erential equation, J. Math. Anal. Appl. 110 (1985), 436–441.
  • Z. Liu, L. Debnath, S.M. Kang and J.S. Ume, Sensitivity analysis for parametric completely generalized nonlinear implicit quasi-variational inclusions, J. Math. Anal. Appl. 277(1) (2003), 142–154.
  • R.N. Mukherjee and H.L. Verma, Sensitivity analysis of generalized variational inequalities, J. Math. Anal. Appl. 167 (1992), 299–304.
  • S.B. Nadler Jr., Multivalued contractive mappings, Paci…c J. Math. 30 (1969), 475–488.
  • M.A. Noor, Sensitivity analysis framework for general quasi-variational inclusions, Comput. Math. Appl. 44 (2002), 1175–1181.
  • M.A. Noor, Sensitivity analysis for quasivariational inclusions, J. Math. Anal. Appl. 236 (1999), 290–299.
  • J.Y. Park and J.U. Jeong, Parametric generalized mixed variational inequalities, Appl. Math. Lett. 17 (2004), 43–48.
  • S.M. Robinson, Sensitivity analysis for variational inequalities by normal-map technique, in: F. Giannessi, A. Maugeri (Eds.), Variational Inequalities and Network Equilibrium problems, Plenum Press, New York, 1995, pp.257–269.
  • N.D. Yen, Hölder continuity of solutions to a parametric variational inequality, Appl. Math. Optim. 31 (1995), 245–255.
  • L.-C. Zeng, S.-M. Guu and J.-C. Yao, Characterization of H-monotone operators with ap- plications to variational inclusions, Comput. Math. Appl. 50 (2005), 329–337.
  • Current address : K. R. Kazmi: Department of Mathematics, Aligarh Muslim University Ali- garh 202002, India
  • E-mail address : krkazmi@gmail.com
  • Current address : Department of Mathematics, Faculty of Science, King Faisal University Al- Hasa, Kingdom of Saudi Arabia
  • E-mail address : shakilmaths@gmail.com

SENSITIVITY ANALYSIS FOR A PARAMETRIC MULTI-VALUED IMPLICIT QUASI VARIATIONAL-LIKE INCLUSION

Year 2016, Volume: 65 Issue: 2, 189 - 205, 01.08.2016
https://doi.org/10.1501/Commua1_0000000769

Abstract

In this paper, using proximal-point mapping of strongly maximalP- -monotone mapping and the property of the …xed-point set of multi-valuedcontractive mapping, we study the behaviour and sensitivity analysis of thesolution set of a parametric generalized implicit quasi-variational-like inclusion involving strongly maximal P - -monotone mapping in real Hilbert space.Further, under suitable conditions, we discuss the Lipschitz continuity of thesolution set with respect to the parameter. The technique and results presentedin this paper can be viewed as extension of the techniques and correspondingresults given in [2,7-10,20,21]

References

  • S. Adly, Perturbed algorithms and sensitivity analysis for a general class of variational in- clusions, J. Math. Anal. Appl. 201(3) (1996), 609–630.
  • R.P. Agarwal, Y.-J. Cho, N.-J. Huang, Sensitivity analysis for strongly nonlinear quasi- variational inclusions, Appl. Math. Lett. 13 (2002), 19–24.
  • R.P. Agarwal, N.-J. Huang and Y.-J. Cho, Generalized nonlinear mixed implicit quasi- variational inclusions with set-valued mappings, J. Inequal. Appl. 7(6) (2002), 807–828.
  • C.E. Chidume, K.R. Kazmi and H. Zegeye, Iterative approximation of a solution of a general variational-like inclusion in Banach spaces, Int. J. Math. Math. Sci. 22 (2004), 1159–1168. [5] S. Dafermos, Sensitivity analysis in variational inequalities, Math. Oper. Res. 13 (1998), 421–434.
  • X.-P. Ding, Sensitivity analysis for generalized nonlinear implicit quasi-variational inclu- sions, Appl. Math. Lett. 17(2) (2004), 225–235.
  • X.-P. Ding, Parametric completely generalized mixed implicit quasi-variational inclusions involving h-maximal monotone mappings, J. Comput. Appl. Math. 182(2) (2005), 252— 269. [8] X.-P. Ding and C.L. Luo, On parametric generalized quasi-variational inequalities, J. Optim. Theory Appl. 100 (1999), 195–205.
  • Y.-P. Fang and N.-J. Huang, H monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput. 145 (2003), 795–803.
  • N.-J. Huang, H.Y. Lan and Y.J. Cho, Sensitivity analysis for nonlinear generlized mixed implicit equilibrium problems with non-monotone set-valued mappings, J. Comput. Anal. Appl. 196(2) (2006), 608— 618.
  • F.A. Khan, Study of Existence of Solutions and Iterative Algorithms for Certain Classes of Variational Inequalities, Ph.D. Thesis, Aligarh Muslim University, Aligarh, India, March, 2006.
  • K.R. Kazmi and F.A. Khan, Iterative approximation of a solution of multi-valued variational- like inclusion in Banach spaces: A P - -proximal-point mapping approach, J. Math. Anal. Appl. 325 (2007), 665— 674.
  • K.R. Kazmi and F.A. Khan, Sensitivity analysis for parametric generalized implicit quasi- variational-like inclusions involving P - (2008), 1198— 1210.
  • accretive mappings, J. Math. Anal. Appl. 337 [14] K.R. Kazmi and F.A. Khan, Parametric general variational-like inequality problem in uni- formly smooth Banach spaces, Fixed Point Theory and Applications, Volume 2006, Article ID 42451, (2006) Pages 1–13, DOI 10.1155/FPTA /2006/42451.
  • T.C. Lim, On …xed point stability for set-valued contractive mappings with applications to generalized diğ erential equation, J. Math. Anal. Appl. 110 (1985), 436–441.
  • Z. Liu, L. Debnath, S.M. Kang and J.S. Ume, Sensitivity analysis for parametric completely generalized nonlinear implicit quasi-variational inclusions, J. Math. Anal. Appl. 277(1) (2003), 142–154.
  • R.N. Mukherjee and H.L. Verma, Sensitivity analysis of generalized variational inequalities, J. Math. Anal. Appl. 167 (1992), 299–304.
  • S.B. Nadler Jr., Multivalued contractive mappings, Paci…c J. Math. 30 (1969), 475–488.
  • M.A. Noor, Sensitivity analysis framework for general quasi-variational inclusions, Comput. Math. Appl. 44 (2002), 1175–1181.
  • M.A. Noor, Sensitivity analysis for quasivariational inclusions, J. Math. Anal. Appl. 236 (1999), 290–299.
  • J.Y. Park and J.U. Jeong, Parametric generalized mixed variational inequalities, Appl. Math. Lett. 17 (2004), 43–48.
  • S.M. Robinson, Sensitivity analysis for variational inequalities by normal-map technique, in: F. Giannessi, A. Maugeri (Eds.), Variational Inequalities and Network Equilibrium problems, Plenum Press, New York, 1995, pp.257–269.
  • N.D. Yen, Hölder continuity of solutions to a parametric variational inequality, Appl. Math. Optim. 31 (1995), 245–255.
  • L.-C. Zeng, S.-M. Guu and J.-C. Yao, Characterization of H-monotone operators with ap- plications to variational inclusions, Comput. Math. Appl. 50 (2005), 329–337.
  • Current address : K. R. Kazmi: Department of Mathematics, Aligarh Muslim University Ali- garh 202002, India
  • E-mail address : krkazmi@gmail.com
  • Current address : Department of Mathematics, Faculty of Science, King Faisal University Al- Hasa, Kingdom of Saudi Arabia
  • E-mail address : shakilmaths@gmail.com
There are 26 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

R. Kazmi K. This is me

A. Alvi Shakeel This is me

Publication Date August 1, 2016
Published in Issue Year 2016 Volume: 65 Issue: 2

Cite

APA Kazmi K., R., & Alvi Shakeel, A. (2016). SENSITIVITY ANALYSIS FOR A PARAMETRIC MULTI-VALUED IMPLICIT QUASI VARIATIONAL-LIKE INCLUSION. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 65(2), 189-205. https://doi.org/10.1501/Commua1_0000000769
AMA Kazmi K. R, Alvi Shakeel A. SENSITIVITY ANALYSIS FOR A PARAMETRIC MULTI-VALUED IMPLICIT QUASI VARIATIONAL-LIKE INCLUSION. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2016;65(2):189-205. doi:10.1501/Commua1_0000000769
Chicago Kazmi K., R., and A. Alvi Shakeel. “SENSITIVITY ANALYSIS FOR A PARAMETRIC MULTI-VALUED IMPLICIT QUASI VARIATIONAL-LIKE INCLUSION”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65, no. 2 (August 2016): 189-205. https://doi.org/10.1501/Commua1_0000000769.
EndNote Kazmi K. R, Alvi Shakeel A (August 1, 2016) SENSITIVITY ANALYSIS FOR A PARAMETRIC MULTI-VALUED IMPLICIT QUASI VARIATIONAL-LIKE INCLUSION. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65 2 189–205.
IEEE R. Kazmi K. and A. Alvi Shakeel, “SENSITIVITY ANALYSIS FOR A PARAMETRIC MULTI-VALUED IMPLICIT QUASI VARIATIONAL-LIKE INCLUSION”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 65, no. 2, pp. 189–205, 2016, doi: 10.1501/Commua1_0000000769.
ISNAD Kazmi K., R. - Alvi Shakeel, A. “SENSITIVITY ANALYSIS FOR A PARAMETRIC MULTI-VALUED IMPLICIT QUASI VARIATIONAL-LIKE INCLUSION”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65/2 (August 2016), 189-205. https://doi.org/10.1501/Commua1_0000000769.
JAMA Kazmi K. R, Alvi Shakeel A. SENSITIVITY ANALYSIS FOR A PARAMETRIC MULTI-VALUED IMPLICIT QUASI VARIATIONAL-LIKE INCLUSION. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65:189–205.
MLA Kazmi K., R. and A. Alvi Shakeel. “SENSITIVITY ANALYSIS FOR A PARAMETRIC MULTI-VALUED IMPLICIT QUASI VARIATIONAL-LIKE INCLUSION”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 65, no. 2, 2016, pp. 189-05, doi:10.1501/Commua1_0000000769.
Vancouver Kazmi K. R, Alvi Shakeel A. SENSITIVITY ANALYSIS FOR A PARAMETRIC MULTI-VALUED IMPLICIT QUASI VARIATIONAL-LIKE INCLUSION. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65(2):189-205.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.