Research Article
BibTex RIS Cite

SEPARATION AXIOMS IN ČECH CLOSURE ORDERED SPACES

Year 2016, Volume: 65 Issue: 2, 1 - 10, 01.08.2016

Abstract

In this paper, we generalize closure spaces by an preorder and we give some order separation axioms in Čech closure ordered spaces.

References

  • A. S. Mashhour, M. H. Ghanim, On Closure Spaces, Indian J. pure appl. Math. 14 (6) (1983), 680-691
  • B. A. Davey, H. A. Priestly, Introduction to lattices and order, Cambridge University Press (1999)
  • D. Andrijević, M. Jelić, M. Mršević, On function space topologies in the setting of Čech closure spaces, Topology and its Applications 148 (2011), 1390-1395
  • E. Čech, Topological spaces, Czechoslovak Acad. of Sciences, Prag, 1966
  • H. A. Priestly, Ordered topological spaces and the reprasentation of distributive lattices, Proc. London Math. Soc. (3) 24 (1972), 507-530
  • L. Nachbin, Topology and Order, Van Nostrand, Princeton, 1965
  • M. Mršević, Proper and admissible topologies in closure spaces, Indian J. Pure Appl. Math 36 (2005), 613-627
  • R. Engelking, General Topology, PWN, Warsawa, 1977
  • S. D. McCartan, Separation axioms for topological ordered spaces, Proc. Camb. Phil. Soc. 64 (1968), 965-973
Year 2016, Volume: 65 Issue: 2, 1 - 10, 01.08.2016

Abstract

References

  • A. S. Mashhour, M. H. Ghanim, On Closure Spaces, Indian J. pure appl. Math. 14 (6) (1983), 680-691
  • B. A. Davey, H. A. Priestly, Introduction to lattices and order, Cambridge University Press (1999)
  • D. Andrijević, M. Jelić, M. Mršević, On function space topologies in the setting of Čech closure spaces, Topology and its Applications 148 (2011), 1390-1395
  • E. Čech, Topological spaces, Czechoslovak Acad. of Sciences, Prag, 1966
  • H. A. Priestly, Ordered topological spaces and the reprasentation of distributive lattices, Proc. London Math. Soc. (3) 24 (1972), 507-530
  • L. Nachbin, Topology and Order, Van Nostrand, Princeton, 1965
  • M. Mršević, Proper and admissible topologies in closure spaces, Indian J. Pure Appl. Math 36 (2005), 613-627
  • R. Engelking, General Topology, PWN, Warsawa, 1977
  • S. D. McCartan, Separation axioms for topological ordered spaces, Proc. Camb. Phil. Soc. 64 (1968), 965-973
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

İrem Eroglu This is me

Erdal Guner

Publication Date August 1, 2016
Submission Date February 15, 2016
Published in Issue Year 2016 Volume: 65 Issue: 2

Cite

APA Eroglu, İ., & Guner, E. (2016). SEPARATION AXIOMS IN ČECH CLOSURE ORDERED SPACES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 65(2), 1-10.
AMA Eroglu İ, Guner E. SEPARATION AXIOMS IN ČECH CLOSURE ORDERED SPACES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2016;65(2):1-10.
Chicago Eroglu, İrem, and Erdal Guner. “SEPARATION AXIOMS IN ČECH CLOSURE ORDERED SPACES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65, no. 2 (August 2016): 1-10.
EndNote Eroglu İ, Guner E (August 1, 2016) SEPARATION AXIOMS IN ČECH CLOSURE ORDERED SPACES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65 2 1–10.
IEEE İ. Eroglu and E. Guner, “SEPARATION AXIOMS IN ČECH CLOSURE ORDERED SPACES”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 65, no. 2, pp. 1–10, 2016.
ISNAD Eroglu, İrem - Guner, Erdal. “SEPARATION AXIOMS IN ČECH CLOSURE ORDERED SPACES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65/2 (August 2016), 1-10.
JAMA Eroglu İ, Guner E. SEPARATION AXIOMS IN ČECH CLOSURE ORDERED SPACES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65:1–10.
MLA Eroglu, İrem and Erdal Guner. “SEPARATION AXIOMS IN ČECH CLOSURE ORDERED SPACES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 65, no. 2, 2016, pp. 1-10.
Vancouver Eroglu İ, Guner E. SEPARATION AXIOMS IN ČECH CLOSURE ORDERED SPACES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65(2):1-10.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.