BibTex RIS Cite

A trace formula for the Sturm-Liouville type equation with retarded argument

Year 2017, Volume: 66 Issue: 1, 124 - 132, 01.02.2017
https://doi.org/10.1501/Commua1_0000000782

Abstract

In this paper, we deal with a discontinuous Sturm-Liouville problem with retarded argument and eigenparameter-dependent boundary conditions. We obtain the asymptotic formulas for the eigenvalues and the regularized trace formula for the problem

References

  • Gelfand I. M. and Levitan B. M., On a simple identify for eigenvalues of the diğerential operator of second order, Dokl. Akad. Nauk SSSR (1953), 88:4, 593-596.
  • Levitan B.M. and Sargsjan I.S., Sturm Liouville and Dirac Operators, Kluwer, Dordrecht (1991), 59.
  • Abdulkadyrov E., Computation of the regularized trace for a Dirac system, Vestnik Moskov. Univ. Ser. Mat. Mekh. (1967), 22:4, 17-24 (Russian).
  • Yang C.F. and Huang Z.Y., Spectral asymptotics and regularized traces for Dirac operators on a star-shaped graph, Applicable Analysis (2012), 91:9, 1717-1730.
  • Dikii L.A., Trace formulas for Sturm Liouville diğerential operators, Amer. Math. Soc. Trans. (1958), 18, 81-115.
  • Levitan B.M., Calculation of the regularized trace for the Sturm Liouville operator, Uspekhi Mat. Nauk. (1964), 19:1, 161-165.
  • Dubrovskii V.V., Regularized trace of the Sturm Liouville operator, Diğ erentsial’nye Urav- neniya (1980), 16, 1127-9.
  • Bayramo¼glu M. and Sahintürk H., Higher order regularized trace formula for the regular Sturm Liouville equation contained spectral parameter in the boundary condition, Applied Mathematics and Computation (2007), 186:2, 1591-1599.
  • Gül E., On the regularized trace of a second order diğerential operator, Applied Mathematics and Computation (2008), 198, 471-480.
  • Makin A., Regularized trace of the Sturm Liouville operator with irregular boundary condi- tions, Electronic Journal of Diğ erential Equations (2009), 2009:27, 1-8.
  • El-Raheem Z.F.A. and Nasse A.H., The regularized trace formula of the spectrum of a diriclet boundary value problem with turning point, Abstract and Applied Analysis (2012), 2012, 492576, 1-12.
  • Yang C.F., Traces of Sturm Liouville operators with discontinuities, Inverse Problems in Science and Engineering (2014), 22:5, 803-813.
  • Hıra F., The regularized trace of Sturm-Liouville problem with discontinuities at two points, Inverse Problems in Science and Engineering (2016), Doi: 10.1080/17415977.2016.1197921. [14] Carlson R., Large eigenvalues and trace formulas for matrix Sturm Liouville problems, SIAM Journal on Mathematical Analysis (1999), 30:5, 949-962.
  • Yang C.F., New trace formula for the matrix Sturm Liouville equation with eigenparameter dependent boundary conditions, Turkish Journal of Mathematics (2013), 37:2, 278-285.
  • Yang C.F., Trace formula for the matrix Sturm Liouville operator, Analysis and Mathematical Physiscs (2016), 6:1, 31-41.
  • Pavlovi´c N., Pikula M. and Vojvodi´c B., First Regularized Trace of the Limit Assignment of Sturm-Liouville Type with Two Constant Delays, Filomat (2015), 29:1, 51-62.
  • Pikula M., Regularized traces of a diğerential operator of Sturm Liouville type with retarded argument, Translated from Diğ erentsial’nye Urawneniya (1990), 26, 103-109.
  • Yang C.F., Trace and inverse problem of a discontinuous Sturm Liouville operator with retarded argument, Journal of Mathematical Analysis and Applications (2012), 395, 30-41. [20] Sadovnichii V.A. and Podol’skii V.E., Traces of operators, Uspekhi Mat. Nauk. (2006), 61:5, 89-156, Transl: Russian Math. Surveys (2006), 61, 885-953.
  • Norkin S.B., Diğerential equations of the second order with retarded argument, in: Transla- tions of Mathematcal Monographs, AMS, Providence, RI (1972), 31.
  • ¸Sen E. and Bayramov A., Calculation of eigenvalues and eigenfunctions of a discontinuous boundary value problem with retarded argument which contains a spectral parameter in the
  • boundary condition, Mathematical and Computer Modelling (2011), 54, 3090-3097.
  • Aydın Akgün F., Bayramov A. and Bayramo¼glu M., Discontinuous boundary value problems with retarded argument and eigenparameter-dependent boundary conditions, Mediterr. J. Math. (2013), 10, 277-288.
  • Pikula M., Vladiµci´c V. and Markovi´c O., A solution to the inverse problem for the Sturm- Liouville-type equation with a delay, Filomat (2013), 27:7, 1237-1245.
  • ¸Sen E., Seo J.J. and Aracı S., Asymptotic behaviour of eigenvalues and eigenfunctions of a Sturm-Liouville problem with retarded argument, Journal of Applied Mathematics (2013), 2013, 306917, 1-8.
  • Bayramov A., Uslu Öztürk S. and Kızılbudak Çalı¸skan S., Computation of eigenvalues and eigenfunctions of a discontinuous boundary value problem with retarded argument, Applied Mathematics and Computation (2007), 191, 592-600.
  • Yang C.F., Huang Z.Y. and Wang Y.P., Trace formulae for the Schrödinger equation with energy-dependent potential, J. Phys. A: Math. Theor. (2010), 43:415207, 15pp.
  • Current address, F. Hıra: Department of Mathematics, Arts and Science Faculty, Hitit Uni- versity, Çorum, 19030, Turkey
  • E-mail address, F. Hıra: fatmahira@yahoo.com.tr, fatmahira@hitit.edu.tr
Year 2017, Volume: 66 Issue: 1, 124 - 132, 01.02.2017
https://doi.org/10.1501/Commua1_0000000782

Abstract

References

  • Gelfand I. M. and Levitan B. M., On a simple identify for eigenvalues of the diğerential operator of second order, Dokl. Akad. Nauk SSSR (1953), 88:4, 593-596.
  • Levitan B.M. and Sargsjan I.S., Sturm Liouville and Dirac Operators, Kluwer, Dordrecht (1991), 59.
  • Abdulkadyrov E., Computation of the regularized trace for a Dirac system, Vestnik Moskov. Univ. Ser. Mat. Mekh. (1967), 22:4, 17-24 (Russian).
  • Yang C.F. and Huang Z.Y., Spectral asymptotics and regularized traces for Dirac operators on a star-shaped graph, Applicable Analysis (2012), 91:9, 1717-1730.
  • Dikii L.A., Trace formulas for Sturm Liouville diğerential operators, Amer. Math. Soc. Trans. (1958), 18, 81-115.
  • Levitan B.M., Calculation of the regularized trace for the Sturm Liouville operator, Uspekhi Mat. Nauk. (1964), 19:1, 161-165.
  • Dubrovskii V.V., Regularized trace of the Sturm Liouville operator, Diğ erentsial’nye Urav- neniya (1980), 16, 1127-9.
  • Bayramo¼glu M. and Sahintürk H., Higher order regularized trace formula for the regular Sturm Liouville equation contained spectral parameter in the boundary condition, Applied Mathematics and Computation (2007), 186:2, 1591-1599.
  • Gül E., On the regularized trace of a second order diğerential operator, Applied Mathematics and Computation (2008), 198, 471-480.
  • Makin A., Regularized trace of the Sturm Liouville operator with irregular boundary condi- tions, Electronic Journal of Diğ erential Equations (2009), 2009:27, 1-8.
  • El-Raheem Z.F.A. and Nasse A.H., The regularized trace formula of the spectrum of a diriclet boundary value problem with turning point, Abstract and Applied Analysis (2012), 2012, 492576, 1-12.
  • Yang C.F., Traces of Sturm Liouville operators with discontinuities, Inverse Problems in Science and Engineering (2014), 22:5, 803-813.
  • Hıra F., The regularized trace of Sturm-Liouville problem with discontinuities at two points, Inverse Problems in Science and Engineering (2016), Doi: 10.1080/17415977.2016.1197921. [14] Carlson R., Large eigenvalues and trace formulas for matrix Sturm Liouville problems, SIAM Journal on Mathematical Analysis (1999), 30:5, 949-962.
  • Yang C.F., New trace formula for the matrix Sturm Liouville equation with eigenparameter dependent boundary conditions, Turkish Journal of Mathematics (2013), 37:2, 278-285.
  • Yang C.F., Trace formula for the matrix Sturm Liouville operator, Analysis and Mathematical Physiscs (2016), 6:1, 31-41.
  • Pavlovi´c N., Pikula M. and Vojvodi´c B., First Regularized Trace of the Limit Assignment of Sturm-Liouville Type with Two Constant Delays, Filomat (2015), 29:1, 51-62.
  • Pikula M., Regularized traces of a diğerential operator of Sturm Liouville type with retarded argument, Translated from Diğ erentsial’nye Urawneniya (1990), 26, 103-109.
  • Yang C.F., Trace and inverse problem of a discontinuous Sturm Liouville operator with retarded argument, Journal of Mathematical Analysis and Applications (2012), 395, 30-41. [20] Sadovnichii V.A. and Podol’skii V.E., Traces of operators, Uspekhi Mat. Nauk. (2006), 61:5, 89-156, Transl: Russian Math. Surveys (2006), 61, 885-953.
  • Norkin S.B., Diğerential equations of the second order with retarded argument, in: Transla- tions of Mathematcal Monographs, AMS, Providence, RI (1972), 31.
  • ¸Sen E. and Bayramov A., Calculation of eigenvalues and eigenfunctions of a discontinuous boundary value problem with retarded argument which contains a spectral parameter in the
  • boundary condition, Mathematical and Computer Modelling (2011), 54, 3090-3097.
  • Aydın Akgün F., Bayramov A. and Bayramo¼glu M., Discontinuous boundary value problems with retarded argument and eigenparameter-dependent boundary conditions, Mediterr. J. Math. (2013), 10, 277-288.
  • Pikula M., Vladiµci´c V. and Markovi´c O., A solution to the inverse problem for the Sturm- Liouville-type equation with a delay, Filomat (2013), 27:7, 1237-1245.
  • ¸Sen E., Seo J.J. and Aracı S., Asymptotic behaviour of eigenvalues and eigenfunctions of a Sturm-Liouville problem with retarded argument, Journal of Applied Mathematics (2013), 2013, 306917, 1-8.
  • Bayramov A., Uslu Öztürk S. and Kızılbudak Çalı¸skan S., Computation of eigenvalues and eigenfunctions of a discontinuous boundary value problem with retarded argument, Applied Mathematics and Computation (2007), 191, 592-600.
  • Yang C.F., Huang Z.Y. and Wang Y.P., Trace formulae for the Schrödinger equation with energy-dependent potential, J. Phys. A: Math. Theor. (2010), 43:415207, 15pp.
  • Current address, F. Hıra: Department of Mathematics, Arts and Science Faculty, Hitit Uni- versity, Çorum, 19030, Turkey
  • E-mail address, F. Hıra: fatmahira@yahoo.com.tr, fatmahira@hitit.edu.tr
There are 28 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Fatma Hıra This is me

Publication Date February 1, 2017
Published in Issue Year 2017 Volume: 66 Issue: 1

Cite

APA Hıra, F. (2017). A trace formula for the Sturm-Liouville type equation with retarded argument. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(1), 124-132. https://doi.org/10.1501/Commua1_0000000782
AMA Hıra F. A trace formula for the Sturm-Liouville type equation with retarded argument. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2017;66(1):124-132. doi:10.1501/Commua1_0000000782
Chicago Hıra, Fatma. “A Trace Formula for the Sturm-Liouville Type Equation With Retarded Argument”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66, no. 1 (February 2017): 124-32. https://doi.org/10.1501/Commua1_0000000782.
EndNote Hıra F (February 1, 2017) A trace formula for the Sturm-Liouville type equation with retarded argument. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66 1 124–132.
IEEE F. Hıra, “A trace formula for the Sturm-Liouville type equation with retarded argument”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 66, no. 1, pp. 124–132, 2017, doi: 10.1501/Commua1_0000000782.
ISNAD Hıra, Fatma. “A Trace Formula for the Sturm-Liouville Type Equation With Retarded Argument”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66/1 (February 2017), 124-132. https://doi.org/10.1501/Commua1_0000000782.
JAMA Hıra F. A trace formula for the Sturm-Liouville type equation with retarded argument. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66:124–132.
MLA Hıra, Fatma. “A Trace Formula for the Sturm-Liouville Type Equation With Retarded Argument”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 66, no. 1, 2017, pp. 124-32, doi:10.1501/Commua1_0000000782.
Vancouver Hıra F. A trace formula for the Sturm-Liouville type equation with retarded argument. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66(1):124-32.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.