BibTex RIS Cite

Inverse nodal problem for a Sturm-Liouville operator with discontinuous coefficient

Year 2017, Volume: 66 Issue: 1, 165 - 171, 01.02.2017
https://doi.org/10.1501/Commua1_0000000785

Abstract

Inverse nodal problem for SturmñLiouville equation with discontinuity coeffecient is studied. A uniqueness theorem and an algorithm for
recovering the coeffecient of the problem from a known sequence related to
the nodal points are given

References

  • R.Kh. Amirov, A.S. Ozkan, Discontinuous Sturm-Liouville Problems with Eigenvalue De- pendent Boundary Condition, Math Phys Anal Geom, 17, 483-491, doi:10.1007/s11040-014- 1
  • L. Andersson, Inverse eigenvalue problems with discontiuous coe¢ cients, Inverse Problems, , (1988), 353-397.
  • M.I. Belishev, Inverse spectral inde…nite problem for the equation y00+ p(x)y = 0on an interval, Funkts. Anal. Prilozh., 21(2) (1987), 68-69.
  • P.J. Browne, B.D. Sleeman, Inverse nodal problem for Sturm–Liouville equation with eigen- parameter depend boundary conditions, Inverse Problems 12 (1996), pp. 377–381.
  • S.A. Buterin, C.T. Shieh, Inverse nodal problem for diğerential pencils, Appl. Math. Lett. , (2009), 1240–1247.
  • S.A. Buterin, C.T. Shieh, Incomplete inverse spectral and nodal problems for diğerential pencil. Results Math. 62, (2012), 167-179
  • R. Carlson, An inverse spectral problem for Sturm-Liouville operators with discontiuous coe¢ cients, Proceed. Amer. Math. Soc., 120(2), (1994), 475-484.
  • Y.H. Cheng, C-K. Law and J. Tsay, Remarks on a new inverse nodal problem, J. Math. Anal. Appl. 248, (2000), pp. 145–155.
  • C.F. Coleman, J.R. McLaughlin, Solution of inverse spectral problems for an impedance with integrable derivative, I, II, Comm. Pure and Appl. Math., 46, (1993), 145-184, 185-212.
  • S. Currie, B.A. Watson, Inverse nodal problems for Sturm–Liouville equations on graphs, Inv. Probl. 23, (2007), pp. 2029–2040.
  • G. Freiling, V.A. Yurko, Inverse problems for diğerential equations with turning points, In- verse Problems 13, (1997), 1247-1263.
  • Y.X. Guo, G.S. Wei Inverse problems: Dense nodal subset on an interior subinterval, J. Diğerential Equations, 255(7), (2013), 2002–2017.
  • O.H. Hald, J.R. McLaughlin, Solutions of inverse nodal problems, Inv. Prob. 5 (1989), pp. –347.
  • C.K. Law, J. Tsay, On the well-posedness of the inverse nodal problem, Inv. Probl. 17 (2001), pp. 1493–1512.
  • J.R. McLaughlin, Analytical methods for recovering coe¢ cients in diğerential equations from spectral data, SIAM Rev., 28, (1986), 53-72.
  • A. McNabb, R. Anderssen and E. Lapwood, Asymptotic behaviour of the eigenvalues of a Sturm–Liouville system with discontiuous coe¢ cients, J. Math. Anal. Appl., 54, (1976), 751.
  • J.R. McLaughlin, Inverse spectral theory using nodal points as data – a uniqueness result, J. Diğ. Eq. 73 (1988), pp. 354–362. A.S. Ozkan,B. Keskin
  • Inverse nodal problems for Sturm–Liouville equation with eigenparameter-dependent boundary and jump conditions, Inverse Problems in Science and Engineering, i-…rst, (2014), doi:10.1080/17415977.2014.991730.
  • C.L. Shen, C.T. Shieh, An inverse nodal problem for vectorial Sturm–Liouville equation, Inv. Probl. 16 (2000), pp. 349–356.
  • C-T Shieh, V. A. Yurko, Inverse nodal and inverse spectral problems for discontinuous bound- ary value problems, J. Math. Anal. Appl. 347 (2008) 266-272.
  • X-F Yang, A solution of the nodal problem, Inverse Problems, 13, (1997) 203-213.
  • X-F. Yang, A new inverse nodal problem, J. Diğer. Eqns. 169 (2001), pp. 633–653.
  • C-F. Yang, Xiao-Ping Yang Inverse nodal problems for the Sturm-Liouville equation with polynomially dependent on the eigenparameter, Inverse Problems in Science and Engineering, (7), (2011), 951-961.
  • C-F. Yang, Inverse nodal problems of discontinuous Sturm–Liouville operator, J. Diğerential Equations, 254, (2013) 1992–2014.
Year 2017, Volume: 66 Issue: 1, 165 - 171, 01.02.2017
https://doi.org/10.1501/Commua1_0000000785

Abstract

References

  • R.Kh. Amirov, A.S. Ozkan, Discontinuous Sturm-Liouville Problems with Eigenvalue De- pendent Boundary Condition, Math Phys Anal Geom, 17, 483-491, doi:10.1007/s11040-014- 1
  • L. Andersson, Inverse eigenvalue problems with discontiuous coe¢ cients, Inverse Problems, , (1988), 353-397.
  • M.I. Belishev, Inverse spectral inde…nite problem for the equation y00+ p(x)y = 0on an interval, Funkts. Anal. Prilozh., 21(2) (1987), 68-69.
  • P.J. Browne, B.D. Sleeman, Inverse nodal problem for Sturm–Liouville equation with eigen- parameter depend boundary conditions, Inverse Problems 12 (1996), pp. 377–381.
  • S.A. Buterin, C.T. Shieh, Inverse nodal problem for diğerential pencils, Appl. Math. Lett. , (2009), 1240–1247.
  • S.A. Buterin, C.T. Shieh, Incomplete inverse spectral and nodal problems for diğerential pencil. Results Math. 62, (2012), 167-179
  • R. Carlson, An inverse spectral problem for Sturm-Liouville operators with discontiuous coe¢ cients, Proceed. Amer. Math. Soc., 120(2), (1994), 475-484.
  • Y.H. Cheng, C-K. Law and J. Tsay, Remarks on a new inverse nodal problem, J. Math. Anal. Appl. 248, (2000), pp. 145–155.
  • C.F. Coleman, J.R. McLaughlin, Solution of inverse spectral problems for an impedance with integrable derivative, I, II, Comm. Pure and Appl. Math., 46, (1993), 145-184, 185-212.
  • S. Currie, B.A. Watson, Inverse nodal problems for Sturm–Liouville equations on graphs, Inv. Probl. 23, (2007), pp. 2029–2040.
  • G. Freiling, V.A. Yurko, Inverse problems for diğerential equations with turning points, In- verse Problems 13, (1997), 1247-1263.
  • Y.X. Guo, G.S. Wei Inverse problems: Dense nodal subset on an interior subinterval, J. Diğerential Equations, 255(7), (2013), 2002–2017.
  • O.H. Hald, J.R. McLaughlin, Solutions of inverse nodal problems, Inv. Prob. 5 (1989), pp. –347.
  • C.K. Law, J. Tsay, On the well-posedness of the inverse nodal problem, Inv. Probl. 17 (2001), pp. 1493–1512.
  • J.R. McLaughlin, Analytical methods for recovering coe¢ cients in diğerential equations from spectral data, SIAM Rev., 28, (1986), 53-72.
  • A. McNabb, R. Anderssen and E. Lapwood, Asymptotic behaviour of the eigenvalues of a Sturm–Liouville system with discontiuous coe¢ cients, J. Math. Anal. Appl., 54, (1976), 751.
  • J.R. McLaughlin, Inverse spectral theory using nodal points as data – a uniqueness result, J. Diğ. Eq. 73 (1988), pp. 354–362. A.S. Ozkan,B. Keskin
  • Inverse nodal problems for Sturm–Liouville equation with eigenparameter-dependent boundary and jump conditions, Inverse Problems in Science and Engineering, i-…rst, (2014), doi:10.1080/17415977.2014.991730.
  • C.L. Shen, C.T. Shieh, An inverse nodal problem for vectorial Sturm–Liouville equation, Inv. Probl. 16 (2000), pp. 349–356.
  • C-T Shieh, V. A. Yurko, Inverse nodal and inverse spectral problems for discontinuous bound- ary value problems, J. Math. Anal. Appl. 347 (2008) 266-272.
  • X-F Yang, A solution of the nodal problem, Inverse Problems, 13, (1997) 203-213.
  • X-F. Yang, A new inverse nodal problem, J. Diğer. Eqns. 169 (2001), pp. 633–653.
  • C-F. Yang, Xiao-Ping Yang Inverse nodal problems for the Sturm-Liouville equation with polynomially dependent on the eigenparameter, Inverse Problems in Science and Engineering, (7), (2011), 951-961.
  • C-F. Yang, Inverse nodal problems of discontinuous Sturm–Liouville operator, J. Diğerential Equations, 254, (2013) 1992–2014.
There are 24 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Sinan Özkan A. This is me

Publication Date February 1, 2017
Published in Issue Year 2017 Volume: 66 Issue: 1

Cite

APA Özkan A., S. (2017). Inverse nodal problem for a Sturm-Liouville operator with discontinuous coefficient. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(1), 165-171. https://doi.org/10.1501/Commua1_0000000785
AMA Özkan A. S. Inverse nodal problem for a Sturm-Liouville operator with discontinuous coefficient. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2017;66(1):165-171. doi:10.1501/Commua1_0000000785
Chicago Özkan A., Sinan. “Inverse Nodal Problem for a Sturm-Liouville Operator With Discontinuous Coefficient”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66, no. 1 (February 2017): 165-71. https://doi.org/10.1501/Commua1_0000000785.
EndNote Özkan A. S (February 1, 2017) Inverse nodal problem for a Sturm-Liouville operator with discontinuous coefficient. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66 1 165–171.
IEEE S. Özkan A., “Inverse nodal problem for a Sturm-Liouville operator with discontinuous coefficient”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 66, no. 1, pp. 165–171, 2017, doi: 10.1501/Commua1_0000000785.
ISNAD Özkan A., Sinan. “Inverse Nodal Problem for a Sturm-Liouville Operator With Discontinuous Coefficient”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66/1 (February 2017), 165-171. https://doi.org/10.1501/Commua1_0000000785.
JAMA Özkan A. S. Inverse nodal problem for a Sturm-Liouville operator with discontinuous coefficient. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66:165–171.
MLA Özkan A., Sinan. “Inverse Nodal Problem for a Sturm-Liouville Operator With Discontinuous Coefficient”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 66, no. 1, 2017, pp. 165-71, doi:10.1501/Commua1_0000000785.
Vancouver Özkan A. S. Inverse nodal problem for a Sturm-Liouville operator with discontinuous coefficient. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66(1):165-71.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.