BibTex RIS Cite

ON MEUSNIER THEOREM FOR PARALLEL SURFACES

Year 2017, Volume: 66 Issue: 1, 187 - 198, 01.02.2017
https://doi.org/10.1501/Commua1_0000000788

Abstract

In this paper, the geodesic curvature, the normal curvature, thegeodesic torsion and the curvature of the image curve on a parallel surfaceof a given curve on a surface are obtained. Moreover, Meusnier theorem forparallel surfaces are discussed

References

  • W. Blaschke, Diferensiyel Geometri Dersleri, ·Istanbul Üniversitesi Yay. No. 433, 1949.
  • L. Brand, Vector and Tensor Analysis, John Wiley & Sons Inc., 1948.
  • T. Craig, Note on parallel surfaces, Journal Für Die Reine und Angewandte Mathematik (Crelle’s Journal), 94 (1883), 162-170.
  • A. C. Çöken, Ü. Çiftci, and C. Ekici, On parallel timelike ruled surfaces with timelike rulings, Kuwait Journal of Science & Engineering, 35 (2008), 21-31.
  • L.P. Eisenhart, A Treatise on the Diğ erential Geometry of Curves and Surfaces, Boston: New York [etc.] Ginn and Company, 1909.
  • A. Görgülü, A. C. Çöken, The Dupin indicatrix for parallel pseudo-Euclidean hypersurfaces in pseudo-Euclidean space En+1, Journ. Inst. Math. and Comp. Sci. (Math. Series) 7(3), (1994), 221-225.
  • A. Görgülü, A. C. Çöken, The Euler theorem for parallel pseudo-Euclidean hypersurfaces in pseudo-Euclidean space En+1, Journ. Inst. Math. and Comp. Sci. (Math. Series) 6(2), (1993), 165.
  • H. H. Hacısaliho¼glu, Diferensiyel Geometri, ·Inönü Ünv. Fen Edebiyat Fak. Yayınları, No.2, S. Kızıltu¼g, Ö. Tarakcı, Y. Yaylı, On the Curves Lying on Parallel Surfaces in the Euclidean space E3, Journal of Advanced Research in Dynamical and Control Systems, 5(3), (2013), 35.
  • E. Kreyszig, Diğ erential Geometry, Dover Publications, Inc.,1991.
  • ¸S. Nizamoglu, Surfaces Réglées Parallèles, Ege Üniv. Fen Fak. Derg., 9A, (1986), 37-48.
  • B. O’Neill, Elementary Diğ erential Geometry, Acedemic Press, Inc., 1966.
  • M. Önder, S. Kızıltu¼g, Bertrand and Mannheim Partner D-Curves on Parallel Surfaces in Minkowski 3-Space, Internatıonal journal of Geometry, 1(2), (2012), 34-45.
  • K. R. Park, G. I. Kim, Oğ sets of ruled surfaces, J. Korean Computer Graphics Society, 4, (1998), 69-75.
  • A. Sabuncuo¼glu, Diferensiyel Geometri, Nobel Yayın Da¼gıtım, 2001.
  • D. W. Yoon, Some properties of parallel surfaces in Euclidean 3-spaces, Honam Mathematical J., 30(4), (2008), 637-644.
  • Dirk J. Struik, Lectures on Classical Diğ erential Geometry, Dover Publications, Inc., 1961.
  • Current address : ÜM ·IT Z·IYA SAVCI: Celal Bayar University, Department of Mathematics Education , 45900, Manisa, TURKEY
Year 2017, Volume: 66 Issue: 1, 187 - 198, 01.02.2017
https://doi.org/10.1501/Commua1_0000000788

Abstract

References

  • W. Blaschke, Diferensiyel Geometri Dersleri, ·Istanbul Üniversitesi Yay. No. 433, 1949.
  • L. Brand, Vector and Tensor Analysis, John Wiley & Sons Inc., 1948.
  • T. Craig, Note on parallel surfaces, Journal Für Die Reine und Angewandte Mathematik (Crelle’s Journal), 94 (1883), 162-170.
  • A. C. Çöken, Ü. Çiftci, and C. Ekici, On parallel timelike ruled surfaces with timelike rulings, Kuwait Journal of Science & Engineering, 35 (2008), 21-31.
  • L.P. Eisenhart, A Treatise on the Diğ erential Geometry of Curves and Surfaces, Boston: New York [etc.] Ginn and Company, 1909.
  • A. Görgülü, A. C. Çöken, The Dupin indicatrix for parallel pseudo-Euclidean hypersurfaces in pseudo-Euclidean space En+1, Journ. Inst. Math. and Comp. Sci. (Math. Series) 7(3), (1994), 221-225.
  • A. Görgülü, A. C. Çöken, The Euler theorem for parallel pseudo-Euclidean hypersurfaces in pseudo-Euclidean space En+1, Journ. Inst. Math. and Comp. Sci. (Math. Series) 6(2), (1993), 165.
  • H. H. Hacısaliho¼glu, Diferensiyel Geometri, ·Inönü Ünv. Fen Edebiyat Fak. Yayınları, No.2, S. Kızıltu¼g, Ö. Tarakcı, Y. Yaylı, On the Curves Lying on Parallel Surfaces in the Euclidean space E3, Journal of Advanced Research in Dynamical and Control Systems, 5(3), (2013), 35.
  • E. Kreyszig, Diğ erential Geometry, Dover Publications, Inc.,1991.
  • ¸S. Nizamoglu, Surfaces Réglées Parallèles, Ege Üniv. Fen Fak. Derg., 9A, (1986), 37-48.
  • B. O’Neill, Elementary Diğ erential Geometry, Acedemic Press, Inc., 1966.
  • M. Önder, S. Kızıltu¼g, Bertrand and Mannheim Partner D-Curves on Parallel Surfaces in Minkowski 3-Space, Internatıonal journal of Geometry, 1(2), (2012), 34-45.
  • K. R. Park, G. I. Kim, Oğ sets of ruled surfaces, J. Korean Computer Graphics Society, 4, (1998), 69-75.
  • A. Sabuncuo¼glu, Diferensiyel Geometri, Nobel Yayın Da¼gıtım, 2001.
  • D. W. Yoon, Some properties of parallel surfaces in Euclidean 3-spaces, Honam Mathematical J., 30(4), (2008), 637-644.
  • Dirk J. Struik, Lectures on Classical Diğ erential Geometry, Dover Publications, Inc., 1961.
  • Current address : ÜM ·IT Z·IYA SAVCI: Celal Bayar University, Department of Mathematics Education , 45900, Manisa, TURKEY
There are 17 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Ziya Ümit Savcı This is me

Ali Görgülü This is me

Cumali Ekici This is me

Publication Date February 1, 2017
Published in Issue Year 2017 Volume: 66 Issue: 1

Cite

APA Savcı, Z. Ü., Görgülü, A., & Ekici, C. (2017). ON MEUSNIER THEOREM FOR PARALLEL SURFACES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(1), 187-198. https://doi.org/10.1501/Commua1_0000000788
AMA Savcı ZÜ, Görgülü A, Ekici C. ON MEUSNIER THEOREM FOR PARALLEL SURFACES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2017;66(1):187-198. doi:10.1501/Commua1_0000000788
Chicago Savcı, Ziya Ümit, Ali Görgülü, and Cumali Ekici. “ON MEUSNIER THEOREM FOR PARALLEL SURFACES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66, no. 1 (February 2017): 187-98. https://doi.org/10.1501/Commua1_0000000788.
EndNote Savcı ZÜ, Görgülü A, Ekici C (February 1, 2017) ON MEUSNIER THEOREM FOR PARALLEL SURFACES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66 1 187–198.
IEEE Z. Ü. Savcı, A. Görgülü, and C. Ekici, “ON MEUSNIER THEOREM FOR PARALLEL SURFACES”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 66, no. 1, pp. 187–198, 2017, doi: 10.1501/Commua1_0000000788.
ISNAD Savcı, Ziya Ümit et al. “ON MEUSNIER THEOREM FOR PARALLEL SURFACES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66/1 (February 2017), 187-198. https://doi.org/10.1501/Commua1_0000000788.
JAMA Savcı ZÜ, Görgülü A, Ekici C. ON MEUSNIER THEOREM FOR PARALLEL SURFACES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66:187–198.
MLA Savcı, Ziya Ümit et al. “ON MEUSNIER THEOREM FOR PARALLEL SURFACES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 66, no. 1, 2017, pp. 187-98, doi:10.1501/Commua1_0000000788.
Vancouver Savcı ZÜ, Görgülü A, Ekici C. ON MEUSNIER THEOREM FOR PARALLEL SURFACES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66(1):187-98.

Cited By

Offset surface pencil with a common asymptotic curve
International Journal of Geometric Methods in Modern Physics
https://doi.org/10.1142/S0219887818501955

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.