BibTex RIS Cite
Year 2017, Volume: 66 Issue: 2, 71 - 79, 01.08.2017
https://doi.org/10.1501/Commua1_0000000802

Abstract

References

  • Antoni, J., On the A-continuity of real functions II, Math. Slovaca (1986), 36 3, 283-287.
  • Buck, R.C., Solution of problem 4216, Amer. Math. Monthly (1948), 55, 36.
  • Burton, D. and Coleman, J., Quasi-Cauchy Sequences, Amer. Math. Monthly (2010), 117 4, 328-333.
  • Cakalli, H., Lacunary statistical convergence in topological groups, Indian J. Pure Appl.
  • Math. (1995), 26 2, 113-119.
  • Cakalli, H., Sequential de…nitions of compactness, Appl. Math. Lett. (2008), 21 6, 594-598.
  • Cakalli, H., Slowly oscillating continuity, Abstr. Appl. Anal. (2008), Hindawi Publ. Corp.
  • New York, ISSN 1085-3375 2008 Article ID 485706, 5 pages. ( doi:10.1155/2008/485706 ).
  • Cakalli, H., Forward continuity, J. Comput. Anal. Appl. (2011), 13 2, 225-230.
  • Cakalli, H., -quasi-Cauchy sequences, Math. Comput. Modelling (2011), 53(1-2), 397-401.
  • Cakalli, H., Statistical ward continuity, Appl. Math. Lett. (2011), 24 10, 1724-1728.
  • Cakalli, H., Statistical-quasi-Cauchy sequences, Math. Comput. Modelling (2011), 54 (5-6), 1620-1624.
  • Cakalli, H., Sequential de…nitions of connectedness, Appl. Math. Lett. (2012), 25 3, 461-465.
  • Cakalli, H., A Variation on Statistical Ward Continuity, Bull. Malays. Math. Sci. Soc. DOI 10.1007/s40840-015-0195-0
  • Cakalli, H., Aras, C.G., Sonmez, A., Lacunary statistical ward continuity, AIP Conf. Proc. (2015), 1676, 020042 http://dx.doi.org/10.1063/1.4930468
  • Çakalli, H. and Hazarika, B., Ideal Quasi-Cauchy sequences, J. Inequal. App (2012), 17 October, 2012. 2012:234 doi:10.1186/1029-242X-2012-234
  • Çakallı, H. and Das, Pratulananda, Fuzzy compactness via summability, Appl. Math. Lett. (2009), 22 11, 1665-1669.
  • Cakalli, H. and Kaplan, H., Strongly lacunary delta ward continuity, AIP Conference Pro- ceedings (2015), 1676, 020063 http://dx.doi.org/10.1063/1.4930489
  • Cakalli, H. and Khan, M.K., Summability in topological Spaces, Appl. Math. Lett. (2011), 24, 348-352.
  • Çakallı, H. and Savas, E., Statistical convergence of double sequences in topological groups, J. Comput. Anal. Appl. (2010), 12 2, 421-426.
  • Çakallı,H., Sönmez, A. and Genç, Ç, On an equivalence of topological vector space valued cone metric spaces and metric spaces, Appl. Math. Lett. (2012), 25 3, 429-433.
  • Connor, J. and Grosse-Erdmann, K.-G., Sequential de…nitions of continuity for real functions, Rocky Mountain J. Math. (2003), 33 1, 93-121.
  • Fast, H., Sur la convergence statistique, Colloq. Math. (1951), 2, 241-244.
  • Fridy, J.A., On statistical convergence, Analysis (1985), 5, 301-313.
  • Fridy, J.A. and Orhan, C., Lacunary statistical convergence, Paci…c J. Math. (1993), 160 1, 43-51.
  • Fridy, J.A. and Orhan, C., Lacunary statistical summability, J. Math. Anal. Appl (1993), 1732, 497-504
  • Keane, M., Understanding Ergodicity, Integers 11B (2011), 1-11.
  • Maio, G. Di and Kocinac, Ljubisa D.R., Statistical convergence in topology, Topology Appl. (2008), 156, 28-45.
  • Özgüç, I.S. and Yurdakadim, T., On quasi-statistical convergence, Commun. Fac. Sci. Univ. Ank. Series A1 (2012), 61 1, 11-17.
  • Öztürk, E., On almost-continuity and almost A-continuity of real functions, Comm.Fac.Sci. Univ.Ankara Ser. A1 Math. (1983), 32, 25-30.
  • Vallin, R.W., Creating slowly oscillating sequences and slowly oscillating continuous func- tions, With an appendix by Vallin and H. Cakalli. Acta Math. Univ. Comenianae (2011), 25 1, 71-78.
  • Winkler, P., Mathematical Puzzles: A Connoisseur’s Collection, A.K.Peters LTD (2004), ISBN 1-56881-201-9.
  • Current address : Huseyin Cakalli :Maltepe University,TR 34857, Maltepe, Istanbul, TURKEY
  • E-mail address : huseyincakalli@maltepe.edu.tr; hcakalli@gmail.com
  • Current address : Huseyin Kaplan: Nigde University, Department of Mathematics, Faculty of
  • Science and Letters, Nigde, TURKEY
  • E-mail address : hkaplan@nigde.edu.tr

A VARIATION ON LACUNARY STATISTICAL QUASI CAUCHY SEQUENCES

Year 2017, Volume: 66 Issue: 2, 71 - 79, 01.08.2017
https://doi.org/10.1501/Commua1_0000000802

Abstract

In this paper, the concept of a lacunary statistically -quasi-Cauchysequence is investigated. In this investigation, we proved interesting theoremsrelated to lacunary statisticallycontinuities. A real valued function f de…ned on a subset A of R, the set ofreal numbers, is called lacunary statisticallyserves lacunary statistically delta quasi-Cauchy sequences of points in A, i.e.(f (k))is a lacunary statistically delta quasi-Cauchy sequence whenever (k)is a lacunary statistically delta quasi-Cauchy sequence of points in A, wherea sequence (k)is called lacunary statistically delta quasi-Cauchy if (a lacunary statistically quasi-Cauchy sequence. It turns out that the set oflacunary statisticallyof continuous functions

References

  • Antoni, J., On the A-continuity of real functions II, Math. Slovaca (1986), 36 3, 283-287.
  • Buck, R.C., Solution of problem 4216, Amer. Math. Monthly (1948), 55, 36.
  • Burton, D. and Coleman, J., Quasi-Cauchy Sequences, Amer. Math. Monthly (2010), 117 4, 328-333.
  • Cakalli, H., Lacunary statistical convergence in topological groups, Indian J. Pure Appl.
  • Math. (1995), 26 2, 113-119.
  • Cakalli, H., Sequential de…nitions of compactness, Appl. Math. Lett. (2008), 21 6, 594-598.
  • Cakalli, H., Slowly oscillating continuity, Abstr. Appl. Anal. (2008), Hindawi Publ. Corp.
  • New York, ISSN 1085-3375 2008 Article ID 485706, 5 pages. ( doi:10.1155/2008/485706 ).
  • Cakalli, H., Forward continuity, J. Comput. Anal. Appl. (2011), 13 2, 225-230.
  • Cakalli, H., -quasi-Cauchy sequences, Math. Comput. Modelling (2011), 53(1-2), 397-401.
  • Cakalli, H., Statistical ward continuity, Appl. Math. Lett. (2011), 24 10, 1724-1728.
  • Cakalli, H., Statistical-quasi-Cauchy sequences, Math. Comput. Modelling (2011), 54 (5-6), 1620-1624.
  • Cakalli, H., Sequential de…nitions of connectedness, Appl. Math. Lett. (2012), 25 3, 461-465.
  • Cakalli, H., A Variation on Statistical Ward Continuity, Bull. Malays. Math. Sci. Soc. DOI 10.1007/s40840-015-0195-0
  • Cakalli, H., Aras, C.G., Sonmez, A., Lacunary statistical ward continuity, AIP Conf. Proc. (2015), 1676, 020042 http://dx.doi.org/10.1063/1.4930468
  • Çakalli, H. and Hazarika, B., Ideal Quasi-Cauchy sequences, J. Inequal. App (2012), 17 October, 2012. 2012:234 doi:10.1186/1029-242X-2012-234
  • Çakallı, H. and Das, Pratulananda, Fuzzy compactness via summability, Appl. Math. Lett. (2009), 22 11, 1665-1669.
  • Cakalli, H. and Kaplan, H., Strongly lacunary delta ward continuity, AIP Conference Pro- ceedings (2015), 1676, 020063 http://dx.doi.org/10.1063/1.4930489
  • Cakalli, H. and Khan, M.K., Summability in topological Spaces, Appl. Math. Lett. (2011), 24, 348-352.
  • Çakallı, H. and Savas, E., Statistical convergence of double sequences in topological groups, J. Comput. Anal. Appl. (2010), 12 2, 421-426.
  • Çakallı,H., Sönmez, A. and Genç, Ç, On an equivalence of topological vector space valued cone metric spaces and metric spaces, Appl. Math. Lett. (2012), 25 3, 429-433.
  • Connor, J. and Grosse-Erdmann, K.-G., Sequential de…nitions of continuity for real functions, Rocky Mountain J. Math. (2003), 33 1, 93-121.
  • Fast, H., Sur la convergence statistique, Colloq. Math. (1951), 2, 241-244.
  • Fridy, J.A., On statistical convergence, Analysis (1985), 5, 301-313.
  • Fridy, J.A. and Orhan, C., Lacunary statistical convergence, Paci…c J. Math. (1993), 160 1, 43-51.
  • Fridy, J.A. and Orhan, C., Lacunary statistical summability, J. Math. Anal. Appl (1993), 1732, 497-504
  • Keane, M., Understanding Ergodicity, Integers 11B (2011), 1-11.
  • Maio, G. Di and Kocinac, Ljubisa D.R., Statistical convergence in topology, Topology Appl. (2008), 156, 28-45.
  • Özgüç, I.S. and Yurdakadim, T., On quasi-statistical convergence, Commun. Fac. Sci. Univ. Ank. Series A1 (2012), 61 1, 11-17.
  • Öztürk, E., On almost-continuity and almost A-continuity of real functions, Comm.Fac.Sci. Univ.Ankara Ser. A1 Math. (1983), 32, 25-30.
  • Vallin, R.W., Creating slowly oscillating sequences and slowly oscillating continuous func- tions, With an appendix by Vallin and H. Cakalli. Acta Math. Univ. Comenianae (2011), 25 1, 71-78.
  • Winkler, P., Mathematical Puzzles: A Connoisseur’s Collection, A.K.Peters LTD (2004), ISBN 1-56881-201-9.
  • Current address : Huseyin Cakalli :Maltepe University,TR 34857, Maltepe, Istanbul, TURKEY
  • E-mail address : huseyincakalli@maltepe.edu.tr; hcakalli@gmail.com
  • Current address : Huseyin Kaplan: Nigde University, Department of Mathematics, Faculty of
  • Science and Letters, Nigde, TURKEY
  • E-mail address : hkaplan@nigde.edu.tr
There are 37 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Hüseyin Cakallı This is me

Hüseyin Kaplan This is me

Publication Date August 1, 2017
Published in Issue Year 2017 Volume: 66 Issue: 2

Cite

APA Cakallı, H., & Kaplan, H. (2017). A VARIATION ON LACUNARY STATISTICAL QUASI CAUCHY SEQUENCES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(2), 71-79. https://doi.org/10.1501/Commua1_0000000802
AMA Cakallı H, Kaplan H. A VARIATION ON LACUNARY STATISTICAL QUASI CAUCHY SEQUENCES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2017;66(2):71-79. doi:10.1501/Commua1_0000000802
Chicago Cakallı, Hüseyin, and Hüseyin Kaplan. “A VARIATION ON LACUNARY STATISTICAL QUASI CAUCHY SEQUENCES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66, no. 2 (August 2017): 71-79. https://doi.org/10.1501/Commua1_0000000802.
EndNote Cakallı H, Kaplan H (August 1, 2017) A VARIATION ON LACUNARY STATISTICAL QUASI CAUCHY SEQUENCES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66 2 71–79.
IEEE H. Cakallı and H. Kaplan, “A VARIATION ON LACUNARY STATISTICAL QUASI CAUCHY SEQUENCES”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 66, no. 2, pp. 71–79, 2017, doi: 10.1501/Commua1_0000000802.
ISNAD Cakallı, Hüseyin - Kaplan, Hüseyin. “A VARIATION ON LACUNARY STATISTICAL QUASI CAUCHY SEQUENCES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66/2 (August 2017), 71-79. https://doi.org/10.1501/Commua1_0000000802.
JAMA Cakallı H, Kaplan H. A VARIATION ON LACUNARY STATISTICAL QUASI CAUCHY SEQUENCES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66:71–79.
MLA Cakallı, Hüseyin and Hüseyin Kaplan. “A VARIATION ON LACUNARY STATISTICAL QUASI CAUCHY SEQUENCES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 66, no. 2, 2017, pp. 71-79, doi:10.1501/Commua1_0000000802.
Vancouver Cakallı H, Kaplan H. A VARIATION ON LACUNARY STATISTICAL QUASI CAUCHY SEQUENCES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66(2):71-9.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.