BibTex RIS Cite

Some Cesàro-type summability spaces defined by a modulus function of order (α;β)

Year 2017, Volume: 66 Issue: 2, 80 - 90, 01.08.2017
https://doi.org/10.1501/Commua1_0000000803

Abstract

In this article, we introduce strong w [ ; f; p] summability of order (α;β) for sequences of complex (or real) numbers and give some inclusionrelations between the sets of lacunary statistical convergence of order (α;β) strong w [ ; f; p]summability and strong w (p)summability

References

  • Altın, Y., Properties of some sets of sequences de…ned by a modulus function, Acta Math. Sci. Ser. B Engl. Ed. 29(2) (2009), 427–434.
  • Caserta, A., Giuseppe, Di M. and Koµcinac, L. D. R., Statistical convergence in function spaces, Abstr. Appl. Anal. 2011, Art. ID 420419, 11 pp.
  • Çakallı, H., A study on statistical convergence, Funct. Anal. Approx. Comput. 1(2) (2009), –24.
  • Et, M., Generalized Cesàro diğerence sequence spaces of non-absolute type involving lacunary sequences, Appl. Math. Comput. 219(17) (2013), 9372–9376.
  • Gadjiev, A. D., and Orhan, C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32(1) (2002), 129-138.
  • Kolk, E., The statistical convergence in Banach spaces, Acta Comment. Univ. Tartu, 928 (1991), 41-52.
  • Çolak, R., Statistical convergence of order ;Modern Methods in Analysis and Its Applica- tions, New Delhi, India: Anamaya Pub, 2010: 121–129.
  • Connor, J. S., The Statistical and Strong p-Cesaro Convergence of Sequences, Analysis,8, pp. (1988), 47-63.
  • Fast, H., Sur La Convergence Statistique, Colloq. Math., 2, pp. (1951), 241–244.
  • Fridy, J., On Statistical Convergence, Analysis, 5, pp. (1985), 301-313.
  • Fridy, J., and Orhan, C., Lacunary Statistical Convergence, Paci…c J. Math., 160, pp. (1993), –51.
  • Fridy, J., and Orhan, C., Lacunary Statistical Summability, J. Math. Anal. Appl., 173, pp. (1993), no. 2, 497–504.
  • Schoenberg, I. J., The Integrability of Certain Functions and Related Summability Methods, Amer. Math. Monthly, 66, pp. (1959), 361–375.
  • Salat, T., On Statistically Convergent Sequences of Real Numbers, Math. Slovaca., 30, pp. (1980), 139-150.
  • Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73-74.
  • ¸Sengül, H., On Statistical Convergence of Order ( ; ) : (In rewiev) Et, M., and ¸Sengül, H., Some Cesaro-type summability spaces of order and lacunary statistical convergence of order , Filomat 28 (2014), no. 8, 1593–1602.
  • ¸Sengül, H., and Et, M., On lacunary statistical convergence of order , Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), no. 2, 473–482.
  • Pehlivan, S., and Fisher, B., Some sequence spaces de…ned by a modulus, Mathematica Slovaca vol. 45, no. 3, pp. 275–280,1995.
  • Nakano, H., Modulared sequence spaces, Proc. Japan Acad. 27 (1951), 508–512.
  • Gaur, A. K., and Mursaleen, M., Diğerence sequence spaces de…ned by a sequence of moduli, Demonstratio Math. 31(2) (1998), 275–278.
  • Nuray, F., and Sava¸s, E., Some new sequence spaces de…ned by a modulus function, Indian J. Pure Appl. Math. 24(11) (1993), 657–663.
  • I¸sık, M., Strongly almost (w; ; q) summable sequences, Math. Slovaca 61(5) (2011), 779–
  • Maddox, I. J., Elements of Functional Analysis, Cambridge University Press, 1970.
  • Maddox, I. J., Sequence spaces de…ned by a modulus, Math. Proc. Camb. Philos. Soc, 1986, :161-166.
  • Et, M., Strongly almost summable diğerence sequences of order m de…ned by a modulus, Studia Sci. Math. Hungar. 40(4) (2003), 463–476.
  • Et, M., Spaces of Cesàro diğerence sequences of order r de…ned by a modulus function in a locally convex space, Taiwanese J. Math. 10(4) (2006), 865-879.
  • Ruckle, W. H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973–978.
  • Pehlivan, S. and Fisher, B., Lacunary strong convergence with respect to a sequence of modulus functions, Comment. Math. Univ. Carolin. 36 (1995), no. 1, 69-76.
Year 2017, Volume: 66 Issue: 2, 80 - 90, 01.08.2017
https://doi.org/10.1501/Commua1_0000000803

Abstract

References

  • Altın, Y., Properties of some sets of sequences de…ned by a modulus function, Acta Math. Sci. Ser. B Engl. Ed. 29(2) (2009), 427–434.
  • Caserta, A., Giuseppe, Di M. and Koµcinac, L. D. R., Statistical convergence in function spaces, Abstr. Appl. Anal. 2011, Art. ID 420419, 11 pp.
  • Çakallı, H., A study on statistical convergence, Funct. Anal. Approx. Comput. 1(2) (2009), –24.
  • Et, M., Generalized Cesàro diğerence sequence spaces of non-absolute type involving lacunary sequences, Appl. Math. Comput. 219(17) (2013), 9372–9376.
  • Gadjiev, A. D., and Orhan, C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32(1) (2002), 129-138.
  • Kolk, E., The statistical convergence in Banach spaces, Acta Comment. Univ. Tartu, 928 (1991), 41-52.
  • Çolak, R., Statistical convergence of order ;Modern Methods in Analysis and Its Applica- tions, New Delhi, India: Anamaya Pub, 2010: 121–129.
  • Connor, J. S., The Statistical and Strong p-Cesaro Convergence of Sequences, Analysis,8, pp. (1988), 47-63.
  • Fast, H., Sur La Convergence Statistique, Colloq. Math., 2, pp. (1951), 241–244.
  • Fridy, J., On Statistical Convergence, Analysis, 5, pp. (1985), 301-313.
  • Fridy, J., and Orhan, C., Lacunary Statistical Convergence, Paci…c J. Math., 160, pp. (1993), –51.
  • Fridy, J., and Orhan, C., Lacunary Statistical Summability, J. Math. Anal. Appl., 173, pp. (1993), no. 2, 497–504.
  • Schoenberg, I. J., The Integrability of Certain Functions and Related Summability Methods, Amer. Math. Monthly, 66, pp. (1959), 361–375.
  • Salat, T., On Statistically Convergent Sequences of Real Numbers, Math. Slovaca., 30, pp. (1980), 139-150.
  • Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73-74.
  • ¸Sengül, H., On Statistical Convergence of Order ( ; ) : (In rewiev) Et, M., and ¸Sengül, H., Some Cesaro-type summability spaces of order and lacunary statistical convergence of order , Filomat 28 (2014), no. 8, 1593–1602.
  • ¸Sengül, H., and Et, M., On lacunary statistical convergence of order , Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), no. 2, 473–482.
  • Pehlivan, S., and Fisher, B., Some sequence spaces de…ned by a modulus, Mathematica Slovaca vol. 45, no. 3, pp. 275–280,1995.
  • Nakano, H., Modulared sequence spaces, Proc. Japan Acad. 27 (1951), 508–512.
  • Gaur, A. K., and Mursaleen, M., Diğerence sequence spaces de…ned by a sequence of moduli, Demonstratio Math. 31(2) (1998), 275–278.
  • Nuray, F., and Sava¸s, E., Some new sequence spaces de…ned by a modulus function, Indian J. Pure Appl. Math. 24(11) (1993), 657–663.
  • I¸sık, M., Strongly almost (w; ; q) summable sequences, Math. Slovaca 61(5) (2011), 779–
  • Maddox, I. J., Elements of Functional Analysis, Cambridge University Press, 1970.
  • Maddox, I. J., Sequence spaces de…ned by a modulus, Math. Proc. Camb. Philos. Soc, 1986, :161-166.
  • Et, M., Strongly almost summable diğerence sequences of order m de…ned by a modulus, Studia Sci. Math. Hungar. 40(4) (2003), 463–476.
  • Et, M., Spaces of Cesàro diğerence sequences of order r de…ned by a modulus function in a locally convex space, Taiwanese J. Math. 10(4) (2006), 865-879.
  • Ruckle, W. H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973–978.
  • Pehlivan, S. and Fisher, B., Lacunary strong convergence with respect to a sequence of modulus functions, Comment. Math. Univ. Carolin. 36 (1995), no. 1, 69-76.
There are 28 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Hacer Şengül This is me

Publication Date August 1, 2017
Published in Issue Year 2017 Volume: 66 Issue: 2

Cite

APA Şengül, H. (2017). Some Cesàro-type summability spaces defined by a modulus function of order (α;β). Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(2), 80-90. https://doi.org/10.1501/Commua1_0000000803
AMA Şengül H. Some Cesàro-type summability spaces defined by a modulus function of order (α;β). Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2017;66(2):80-90. doi:10.1501/Commua1_0000000803
Chicago Şengül, Hacer. “Some Cesàro-Type Summability Spaces Defined by a Modulus Function of Order (α;β)”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66, no. 2 (August 2017): 80-90. https://doi.org/10.1501/Commua1_0000000803.
EndNote Şengül H (August 1, 2017) Some Cesàro-type summability spaces defined by a modulus function of order (α;β). Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66 2 80–90.
IEEE H. Şengül, “Some Cesàro-type summability spaces defined by a modulus function of order (α;β)”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 66, no. 2, pp. 80–90, 2017, doi: 10.1501/Commua1_0000000803.
ISNAD Şengül, Hacer. “Some Cesàro-Type Summability Spaces Defined by a Modulus Function of Order (α;β)”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66/2 (August 2017), 80-90. https://doi.org/10.1501/Commua1_0000000803.
JAMA Şengül H. Some Cesàro-type summability spaces defined by a modulus function of order (α;β). Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66:80–90.
MLA Şengül, Hacer. “Some Cesàro-Type Summability Spaces Defined by a Modulus Function of Order (α;β)”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 66, no. 2, 2017, pp. 80-90, doi:10.1501/Commua1_0000000803.
Vancouver Şengül H. Some Cesàro-type summability spaces defined by a modulus function of order (α;β). Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66(2):80-9.

Cited By





On strong N_{θ}^{α}(A,F)-convergence
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
https://doi.org/10.31801/cfsuasmas.546616












Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.