BibTex RIS Cite

On vector-valued classical and variable exponent amalgam spaces

Year 2017, Volume: 66 Issue: 2, 100 - 114, 01.08.2017
https://doi.org/10.1501/Commua1_0000000805

References

  • Avcı, H. and Gürkanli, A. T. Multipliers and tensor products of L (p; q) Lorentz spaces, Acta Math Sci Ser. B Engl. Ed. , 27, 2007, 107-116.
  • Aydın, I. and Gürkanlı, A. T. On some properties of the spaces Ap(x)(Rn) :Proc of the Jang Math Soc, 12, 2009, No.2, pp.141-155.
  • Aydın, I. and Gürkanlı, A. T. Weighted variable exponent amalgam spaces W (Lp(x); Lq), w Glas Mat, Vol. 47(67), 2012,165-174.
  • Aydın, I. Weighted variable Sobolev spaces and capacity, J Funct Space Appl, Volume 2012
  • Article ID 132690, 17 pages, doi:10.1155/2012/132690.
  • Aydın, I. On variable exponent amalgam spaces, Analele Stiint Univ, Vol.20(3), 2012, 5-20.
  • Bonsall, F. F. and Duncan, J. Complete normed algebras, Springer-Verlag, Belin, Heidelberg, new-York, 1973.
  • Cheng, C. and Xu, J. Geometric properties of Banach space valued Bochner-Lebesgue spaces with variable exponent, J Math Inequal, Vol.7(3), 2013, 461-475.
  • Conway, J. B. A course in functional analysis, New-york, Springer-Verlag, 1985.
  • Diestel, J. and UHL, J.J. Vector measures, Amer Math Soc, 1977.
  • Feichtinger, H. G. Banach convolution algebras of Wiener type, In: Functions, Series, Oper- ators, Proc. Conf. Budapest 38, Colloq. Math. Soc. Janos Bolyai, 1980, 509–524.
  • Fournier, J. J. and Stewart, J. Amalgams of Land `q, Bull Amer Math Soc, 13, 1985, 1–21.
  • Gaudry, G. I. Quasimeasures and operators commuting with convolution, Pac J Math., 1965, (3), 461-476.
  • Gürkanlı, A. T. The amalgam spaces W (Lp(x); Lfpng)and boundedness of Hardy-Littlewood maximal operators, Current Trends in Analysis and Its Applications: Proceedings of the 9th ISAAC Congress, Krakow 2013.
  • Gürkanlı, A. T. and Aydın, I. On the weighted variable exponent amalgam space mW (Lp(x); Lq ), Acta Math Sci,34B(4), 2014,1–13.
  • Heil, C. An introduction to weighted Wiener amalgams, In: Wavelets and their applications Chennai, January 2002, Allied Publishers, New Delhi, 2003, p. 183–216.
  • Holland, F. Harmonic analysis on amalgams of Lpand `q, J. London Math. Soc. (2), 10, 1975, –305.
  • Kokilashvili, V., Meskhi, A. and Zaighum, A. Weighted kernel operators in variable exponent amalgam spaces, J Inequal Appl, 2013, DOI:10.1186/1029-242X-2013-173.
  • Kovacik, O. and Rakosnik, J. On spaces Lp(x)and Wk;p(x), Czech Math J. 41(116), 1991, 618.
  • Köthe, G. Topological vector spaces, V.I, Berlin, Springer-Verlag, 1969.
  • Kulak, Ö. and Gürkanlı, A. T. Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces, J Inequal Appl, 2014, 2014:476.
  • Lakshmi, D. V. and Ray, S. K. Vector-valued amalgam spaces, Int J Comp Cog, Vol. 7(4), , 33-36. Lakshmi, D. V. and Ray, S. K. Convolution product on vector-valued amalgam spaces, Int J Comp Cog , Vol. 8(3), 2010, 67-73.
  • Meskhi, A. and Zaighum, M. A. On The boundedness of maximal and potential operators in variable exponent amalgam spaces, J Math Inequal, Vol. 8(1), 2014, 123-152.
  • Öztop, S. and Gurkanli, A T. Multipliers and tensor product of weighted Lp-spaces, Acta Math Scientia, 2001, 21B: 41–49.
  • Rieğel, M. A. Induced Banach algebras and locally compact groups, J Funct Anal, 1967, 491.
  • Rieğel, M. A. Multipliers and tensor products of Lpspaces of locally compact geroups, Stud Math, 1969, 33, 71-82.
  • Sa¼gır, B. Multipliers and tensor products of vector-valued Lp(G; A)spaces, Taiwan J Math, (3), 2003, 493-501.
  • Schatten, R. A Theory of Cross-Spaces, Annal Math Stud, 26, 1950.
  • Squire, M. L. T. Amalgams of Lpand `, Ph.D. Thesis, McMaster University, 1984.
  • Wiener, N. On the representation of functions by trigonometric integrals, Math. Z., 24, 1926, 616.
  • Current address, Ismail AYDIN: Sinop University, Faculty of Sciences and Letters Department of Mathematics, Sinop, Turkey. E-mail address : iaydin@sinop.edu.tr iaydinmath@gmail.com
Year 2017, Volume: 66 Issue: 2, 100 - 114, 01.08.2017
https://doi.org/10.1501/Commua1_0000000805

References

  • Avcı, H. and Gürkanli, A. T. Multipliers and tensor products of L (p; q) Lorentz spaces, Acta Math Sci Ser. B Engl. Ed. , 27, 2007, 107-116.
  • Aydın, I. and Gürkanlı, A. T. On some properties of the spaces Ap(x)(Rn) :Proc of the Jang Math Soc, 12, 2009, No.2, pp.141-155.
  • Aydın, I. and Gürkanlı, A. T. Weighted variable exponent amalgam spaces W (Lp(x); Lq), w Glas Mat, Vol. 47(67), 2012,165-174.
  • Aydın, I. Weighted variable Sobolev spaces and capacity, J Funct Space Appl, Volume 2012
  • Article ID 132690, 17 pages, doi:10.1155/2012/132690.
  • Aydın, I. On variable exponent amalgam spaces, Analele Stiint Univ, Vol.20(3), 2012, 5-20.
  • Bonsall, F. F. and Duncan, J. Complete normed algebras, Springer-Verlag, Belin, Heidelberg, new-York, 1973.
  • Cheng, C. and Xu, J. Geometric properties of Banach space valued Bochner-Lebesgue spaces with variable exponent, J Math Inequal, Vol.7(3), 2013, 461-475.
  • Conway, J. B. A course in functional analysis, New-york, Springer-Verlag, 1985.
  • Diestel, J. and UHL, J.J. Vector measures, Amer Math Soc, 1977.
  • Feichtinger, H. G. Banach convolution algebras of Wiener type, In: Functions, Series, Oper- ators, Proc. Conf. Budapest 38, Colloq. Math. Soc. Janos Bolyai, 1980, 509–524.
  • Fournier, J. J. and Stewart, J. Amalgams of Land `q, Bull Amer Math Soc, 13, 1985, 1–21.
  • Gaudry, G. I. Quasimeasures and operators commuting with convolution, Pac J Math., 1965, (3), 461-476.
  • Gürkanlı, A. T. The amalgam spaces W (Lp(x); Lfpng)and boundedness of Hardy-Littlewood maximal operators, Current Trends in Analysis and Its Applications: Proceedings of the 9th ISAAC Congress, Krakow 2013.
  • Gürkanlı, A. T. and Aydın, I. On the weighted variable exponent amalgam space mW (Lp(x); Lq ), Acta Math Sci,34B(4), 2014,1–13.
  • Heil, C. An introduction to weighted Wiener amalgams, In: Wavelets and their applications Chennai, January 2002, Allied Publishers, New Delhi, 2003, p. 183–216.
  • Holland, F. Harmonic analysis on amalgams of Lpand `q, J. London Math. Soc. (2), 10, 1975, –305.
  • Kokilashvili, V., Meskhi, A. and Zaighum, A. Weighted kernel operators in variable exponent amalgam spaces, J Inequal Appl, 2013, DOI:10.1186/1029-242X-2013-173.
  • Kovacik, O. and Rakosnik, J. On spaces Lp(x)and Wk;p(x), Czech Math J. 41(116), 1991, 618.
  • Köthe, G. Topological vector spaces, V.I, Berlin, Springer-Verlag, 1969.
  • Kulak, Ö. and Gürkanlı, A. T. Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces, J Inequal Appl, 2014, 2014:476.
  • Lakshmi, D. V. and Ray, S. K. Vector-valued amalgam spaces, Int J Comp Cog, Vol. 7(4), , 33-36. Lakshmi, D. V. and Ray, S. K. Convolution product on vector-valued amalgam spaces, Int J Comp Cog , Vol. 8(3), 2010, 67-73.
  • Meskhi, A. and Zaighum, M. A. On The boundedness of maximal and potential operators in variable exponent amalgam spaces, J Math Inequal, Vol. 8(1), 2014, 123-152.
  • Öztop, S. and Gurkanli, A T. Multipliers and tensor product of weighted Lp-spaces, Acta Math Scientia, 2001, 21B: 41–49.
  • Rieğel, M. A. Induced Banach algebras and locally compact groups, J Funct Anal, 1967, 491.
  • Rieğel, M. A. Multipliers and tensor products of Lpspaces of locally compact geroups, Stud Math, 1969, 33, 71-82.
  • Sa¼gır, B. Multipliers and tensor products of vector-valued Lp(G; A)spaces, Taiwan J Math, (3), 2003, 493-501.
  • Schatten, R. A Theory of Cross-Spaces, Annal Math Stud, 26, 1950.
  • Squire, M. L. T. Amalgams of Lpand `, Ph.D. Thesis, McMaster University, 1984.
  • Wiener, N. On the representation of functions by trigonometric integrals, Math. Z., 24, 1926, 616.
  • Current address, Ismail AYDIN: Sinop University, Faculty of Sciences and Letters Department of Mathematics, Sinop, Turkey. E-mail address : iaydin@sinop.edu.tr iaydinmath@gmail.com
There are 31 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

İsmail Aydın This is me

Publication Date August 1, 2017
Published in Issue Year 2017 Volume: 66 Issue: 2

Cite

APA Aydın, İ. (2017). On vector-valued classical and variable exponent amalgam spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(2), 100-114. https://doi.org/10.1501/Commua1_0000000805
AMA Aydın İ. On vector-valued classical and variable exponent amalgam spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2017;66(2):100-114. doi:10.1501/Commua1_0000000805
Chicago Aydın, İsmail. “On Vector-Valued Classical and Variable Exponent Amalgam Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66, no. 2 (August 2017): 100-114. https://doi.org/10.1501/Commua1_0000000805.
EndNote Aydın İ (August 1, 2017) On vector-valued classical and variable exponent amalgam spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66 2 100–114.
IEEE İ. Aydın, “On vector-valued classical and variable exponent amalgam spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 66, no. 2, pp. 100–114, 2017, doi: 10.1501/Commua1_0000000805.
ISNAD Aydın, İsmail. “On Vector-Valued Classical and Variable Exponent Amalgam Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66/2 (August 2017), 100-114. https://doi.org/10.1501/Commua1_0000000805.
JAMA Aydın İ. On vector-valued classical and variable exponent amalgam spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66:100–114.
MLA Aydın, İsmail. “On Vector-Valued Classical and Variable Exponent Amalgam Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 66, no. 2, 2017, pp. 100-14, doi:10.1501/Commua1_0000000805.
Vancouver Aydın İ. On vector-valued classical and variable exponent amalgam spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66(2):100-14.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.