Avcı, H. and Gürkanli, A. T. Multipliers and tensor products of L (p; q) Lorentz spaces, Acta Math Sci Ser. B Engl. Ed. , 27, 2007, 107-116.
Aydın, I. and Gürkanlı, A. T. On some properties of the spaces Ap(x)(Rn) :Proc of the Jang Math Soc, 12, 2009, No.2, pp.141-155.
Aydın, I. and Gürkanlı, A. T. Weighted variable exponent amalgam spaces W (Lp(x); Lq), w Glas Mat, Vol. 47(67), 2012,165-174.
Aydın, I. Weighted variable Sobolev spaces and capacity, J Funct Space Appl, Volume 2012
Article ID 132690, 17 pages, doi:10.1155/2012/132690.
Aydın, I. On variable exponent amalgam spaces, Analele Stiint Univ, Vol.20(3), 2012, 5-20.
Bonsall, F. F. and Duncan, J. Complete normed algebras, Springer-Verlag, Belin, Heidelberg, new-York, 1973.
Cheng, C. and Xu, J. Geometric properties of Banach space valued Bochner-Lebesgue spaces with variable exponent, J Math Inequal, Vol.7(3), 2013, 461-475.
Conway, J. B. A course in functional analysis, New-york, Springer-Verlag, 1985.
Diestel, J. and UHL, J.J. Vector measures, Amer Math Soc, 1977.
Feichtinger, H. G. Banach convolution algebras of Wiener type, In: Functions, Series, Oper- ators, Proc. Conf. Budapest 38, Colloq. Math. Soc. Janos Bolyai, 1980, 509–524.
Fournier, J. J. and Stewart, J. Amalgams of Land `q, Bull Amer Math Soc, 13, 1985, 1–21.
Gaudry, G. I. Quasimeasures and operators commuting with convolution, Pac J Math., 1965, (3), 461-476.
Gürkanlı, A. T. The amalgam spaces W (Lp(x); Lfpng)and boundedness of Hardy-Littlewood maximal operators, Current Trends in Analysis and Its Applications: Proceedings of the 9th ISAAC Congress, Krakow 2013.
Gürkanlı, A. T. and Aydın, I. On the weighted variable exponent amalgam space mW (Lp(x); Lq ), Acta Math Sci,34B(4), 2014,1–13.
Heil, C. An introduction to weighted Wiener amalgams, In: Wavelets and their applications Chennai, January 2002, Allied Publishers, New Delhi, 2003, p. 183–216.
Holland, F. Harmonic analysis on amalgams of Lpand `q, J. London Math. Soc. (2), 10, 1975, –305.
Kokilashvili, V., Meskhi, A. and Zaighum, A. Weighted kernel operators in variable exponent amalgam spaces, J Inequal Appl, 2013, DOI:10.1186/1029-242X-2013-173.
Kovacik, O. and Rakosnik, J. On spaces Lp(x)and Wk;p(x), Czech Math J. 41(116), 1991, 618.
Köthe, G. Topological vector spaces, V.I, Berlin, Springer-Verlag, 1969.
Kulak, Ö. and Gürkanlı, A. T. Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces, J Inequal Appl, 2014, 2014:476.
Lakshmi, D. V. and Ray, S. K. Vector-valued amalgam spaces, Int J Comp Cog, Vol. 7(4), , 33-36. Lakshmi, D. V. and Ray, S. K. Convolution product on vector-valued amalgam spaces, Int J Comp Cog , Vol. 8(3), 2010, 67-73.
Meskhi, A. and Zaighum, M. A. On The boundedness of maximal and potential operators in variable exponent amalgam spaces, J Math Inequal, Vol. 8(1), 2014, 123-152.
Öztop, S. and Gurkanli, A T. Multipliers and tensor product of weighted Lp-spaces, Acta Math Scientia, 2001, 21B: 41–49.
Rieğel, M. A. Induced Banach algebras and locally compact groups, J Funct Anal, 1967, 491.
Rieğel, M. A. Multipliers and tensor products of Lpspaces of locally compact geroups, Stud Math, 1969, 33, 71-82.
Sa¼gır, B. Multipliers and tensor products of vector-valued Lp(G; A)spaces, Taiwan J Math, (3), 2003, 493-501.
Schatten, R. A Theory of Cross-Spaces, Annal Math Stud, 26, 1950.
Squire, M. L. T. Amalgams of Lpand `, Ph.D. Thesis, McMaster University, 1984.
Wiener, N. On the representation of functions by trigonometric integrals, Math. Z., 24, 1926, 616.
Current address, Ismail AYDIN: Sinop University, Faculty of Sciences and Letters Department of Mathematics, Sinop, Turkey. E-mail address : iaydin@sinop.edu.tr iaydinmath@gmail.com
Year 2017,
Volume: 66 Issue: 2, 100 - 114, 01.08.2017
Avcı, H. and Gürkanli, A. T. Multipliers and tensor products of L (p; q) Lorentz spaces, Acta Math Sci Ser. B Engl. Ed. , 27, 2007, 107-116.
Aydın, I. and Gürkanlı, A. T. On some properties of the spaces Ap(x)(Rn) :Proc of the Jang Math Soc, 12, 2009, No.2, pp.141-155.
Aydın, I. and Gürkanlı, A. T. Weighted variable exponent amalgam spaces W (Lp(x); Lq), w Glas Mat, Vol. 47(67), 2012,165-174.
Aydın, I. Weighted variable Sobolev spaces and capacity, J Funct Space Appl, Volume 2012
Article ID 132690, 17 pages, doi:10.1155/2012/132690.
Aydın, I. On variable exponent amalgam spaces, Analele Stiint Univ, Vol.20(3), 2012, 5-20.
Bonsall, F. F. and Duncan, J. Complete normed algebras, Springer-Verlag, Belin, Heidelberg, new-York, 1973.
Cheng, C. and Xu, J. Geometric properties of Banach space valued Bochner-Lebesgue spaces with variable exponent, J Math Inequal, Vol.7(3), 2013, 461-475.
Conway, J. B. A course in functional analysis, New-york, Springer-Verlag, 1985.
Diestel, J. and UHL, J.J. Vector measures, Amer Math Soc, 1977.
Feichtinger, H. G. Banach convolution algebras of Wiener type, In: Functions, Series, Oper- ators, Proc. Conf. Budapest 38, Colloq. Math. Soc. Janos Bolyai, 1980, 509–524.
Fournier, J. J. and Stewart, J. Amalgams of Land `q, Bull Amer Math Soc, 13, 1985, 1–21.
Gaudry, G. I. Quasimeasures and operators commuting with convolution, Pac J Math., 1965, (3), 461-476.
Gürkanlı, A. T. The amalgam spaces W (Lp(x); Lfpng)and boundedness of Hardy-Littlewood maximal operators, Current Trends in Analysis and Its Applications: Proceedings of the 9th ISAAC Congress, Krakow 2013.
Gürkanlı, A. T. and Aydın, I. On the weighted variable exponent amalgam space mW (Lp(x); Lq ), Acta Math Sci,34B(4), 2014,1–13.
Heil, C. An introduction to weighted Wiener amalgams, In: Wavelets and their applications Chennai, January 2002, Allied Publishers, New Delhi, 2003, p. 183–216.
Holland, F. Harmonic analysis on amalgams of Lpand `q, J. London Math. Soc. (2), 10, 1975, –305.
Kokilashvili, V., Meskhi, A. and Zaighum, A. Weighted kernel operators in variable exponent amalgam spaces, J Inequal Appl, 2013, DOI:10.1186/1029-242X-2013-173.
Kovacik, O. and Rakosnik, J. On spaces Lp(x)and Wk;p(x), Czech Math J. 41(116), 1991, 618.
Köthe, G. Topological vector spaces, V.I, Berlin, Springer-Verlag, 1969.
Kulak, Ö. and Gürkanlı, A. T. Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces, J Inequal Appl, 2014, 2014:476.
Lakshmi, D. V. and Ray, S. K. Vector-valued amalgam spaces, Int J Comp Cog, Vol. 7(4), , 33-36. Lakshmi, D. V. and Ray, S. K. Convolution product on vector-valued amalgam spaces, Int J Comp Cog , Vol. 8(3), 2010, 67-73.
Meskhi, A. and Zaighum, M. A. On The boundedness of maximal and potential operators in variable exponent amalgam spaces, J Math Inequal, Vol. 8(1), 2014, 123-152.
Öztop, S. and Gurkanli, A T. Multipliers and tensor product of weighted Lp-spaces, Acta Math Scientia, 2001, 21B: 41–49.
Rieğel, M. A. Induced Banach algebras and locally compact groups, J Funct Anal, 1967, 491.
Rieğel, M. A. Multipliers and tensor products of Lpspaces of locally compact geroups, Stud Math, 1969, 33, 71-82.
Sa¼gır, B. Multipliers and tensor products of vector-valued Lp(G; A)spaces, Taiwan J Math, (3), 2003, 493-501.
Schatten, R. A Theory of Cross-Spaces, Annal Math Stud, 26, 1950.
Squire, M. L. T. Amalgams of Lpand `, Ph.D. Thesis, McMaster University, 1984.
Wiener, N. On the representation of functions by trigonometric integrals, Math. Z., 24, 1926, 616.
Current address, Ismail AYDIN: Sinop University, Faculty of Sciences and Letters Department of Mathematics, Sinop, Turkey. E-mail address : iaydin@sinop.edu.tr iaydinmath@gmail.com
Aydın, İ. (2017). On vector-valued classical and variable exponent amalgam spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(2), 100-114. https://doi.org/10.1501/Commua1_0000000805
AMA
Aydın İ. On vector-valued classical and variable exponent amalgam spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2017;66(2):100-114. doi:10.1501/Commua1_0000000805
Chicago
Aydın, İsmail. “On Vector-Valued Classical and Variable Exponent Amalgam Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66, no. 2 (August 2017): 100-114. https://doi.org/10.1501/Commua1_0000000805.
EndNote
Aydın İ (August 1, 2017) On vector-valued classical and variable exponent amalgam spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66 2 100–114.
IEEE
İ. Aydın, “On vector-valued classical and variable exponent amalgam spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 66, no. 2, pp. 100–114, 2017, doi: 10.1501/Commua1_0000000805.
ISNAD
Aydın, İsmail. “On Vector-Valued Classical and Variable Exponent Amalgam Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66/2 (August 2017), 100-114. https://doi.org/10.1501/Commua1_0000000805.
JAMA
Aydın İ. On vector-valued classical and variable exponent amalgam spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66:100–114.
MLA
Aydın, İsmail. “On Vector-Valued Classical and Variable Exponent Amalgam Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 66, no. 2, 2017, pp. 100-14, doi:10.1501/Commua1_0000000805.
Vancouver
Aydın İ. On vector-valued classical and variable exponent amalgam spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66(2):100-14.