BibTex RIS Cite

CONVEXITY PROPERTIES AND INEQUALITIES CONCERNING THE(p; k)-GAMMA FUNCTION

Year 2017, Volume: 66 Issue: 2, 130 - 140, 01.08.2017
https://doi.org/10.1501/Commua1_0000000807

Abstract

In this paper, some convexity properties and some inequalities forthe (p; k)-analogue of the Gamma function,a (p; k)-analogue of the celebrated Bohr-Mollerup theorem is given. Furthermore, a (p; k)-analogue of the Riemann zeta function,p;k(x)is introduced andsome associated inequalities are derived. The established results provide the(p; k)-generalizations of some known results concerning the classical Gammafunction

References

  • S. S. Dragomir, R. P. Agarwal and N. S. Barnett, Inequalities for Beta and Gamma Functions via Some Classical and New Integral Inequalities, Journal of Inequalities and Applications, 5 (2000), 103-165.
  • B. N. Guo and F. Qi, Sharp bounds for harmonic numbers, Applied Mathematics and Com- putation, 218(3)(2011), 991-995.
  • J. D. Keµcki´c and P. M. Vasi´c, Some inequalities for the Gamma function, Publ. Inst. Math. Beograd N. S., 11(1971), 107-114.
  • C. G. Kokologiannaki and V. Krasniqi, Some properties of the k-Gamma function, Le Matem- atiche, LXVIII (2013), Fasc. I, 13-22.
  • V. Krasniqi, T. Mansour and A. Sh. Shabani, Some Monotonicity Properties and Inequalities for and
  • Functions, Mathematical Communications, 15(2)(2010), 365-376.
  • V. Krasniqi and A. S. Shabani, Convexity Properties and Inequalities for a Generalized Gamma Function, Applied Mathematics E-Notes, 10(2010), 27-35.
  • A. Laforgia and P. Natalini, Turan type inequalities for some special functions, J. Ineq. Pure Appl. Math., 7(1)(2006), Art. 22, 1-5.
  • F. Merovci, Turan type inequalities for p-Polygamma functions, Le Matematiche, LXVIII (2013), Fasc. II, 99-106.
  • K. Nantomah, Some inequalities bounding certain ratios of the (p; k)-Gamma function, New Trends in Mathematical Sciences, 4(4)(2016), 329-336.
  • K. Nantomah. E. Prempeh and S. B. Twum, On a (p; k)-analogue of the Gamma function and some associated Inequalities, Moroccan Journal of Pure and Applied Analysis, 2(2)(2016), 79-90.
  • E. Neuman, Inequalities involving a logarithmically convex function and their applications to special functions, J. Inequal. Pure Appl. Math., 7(1)(2006) Art. 16.
  • C. P. Nilculescu, Convexity according to the geometric mean, Mathematical Inequalities and Applications, 3(2)(2000), 155-167.
  • C. Niculescu and L. E. Persson, Convex Functions and their Applications, A Contemporary Approach, CMS Books in Mathematics, Vol. 23, Springer-Verlag, New York, 2006.
  • J. Sandor, Selected Chapters of Geometry, Analysis and Number Theory, RGMIA Mono- graphs, Victoria University, 2005.
  • Xiao-Ming Zhang, Tie-Quan Xu and Ling-bo Situ, Geometric convexity of a function in- volving Gamma function and application to inequality theory, J. Inequal. Pure Appl. Math., 8(1)(2007), Art. 17.
  • Current address : Kwara Nantomah: Department of Mathematics, Faculty of Mathematical Sciences, University for Development Studies, Navrongo Campus, P. O. Box 24, Navrongo, UE/R, Ghana.
  • E-mail address : mykwarasoft@yahoo.com, knantomah@uds.edu.gh
Year 2017, Volume: 66 Issue: 2, 130 - 140, 01.08.2017
https://doi.org/10.1501/Commua1_0000000807

Abstract

References

  • S. S. Dragomir, R. P. Agarwal and N. S. Barnett, Inequalities for Beta and Gamma Functions via Some Classical and New Integral Inequalities, Journal of Inequalities and Applications, 5 (2000), 103-165.
  • B. N. Guo and F. Qi, Sharp bounds for harmonic numbers, Applied Mathematics and Com- putation, 218(3)(2011), 991-995.
  • J. D. Keµcki´c and P. M. Vasi´c, Some inequalities for the Gamma function, Publ. Inst. Math. Beograd N. S., 11(1971), 107-114.
  • C. G. Kokologiannaki and V. Krasniqi, Some properties of the k-Gamma function, Le Matem- atiche, LXVIII (2013), Fasc. I, 13-22.
  • V. Krasniqi, T. Mansour and A. Sh. Shabani, Some Monotonicity Properties and Inequalities for and
  • Functions, Mathematical Communications, 15(2)(2010), 365-376.
  • V. Krasniqi and A. S. Shabani, Convexity Properties and Inequalities for a Generalized Gamma Function, Applied Mathematics E-Notes, 10(2010), 27-35.
  • A. Laforgia and P. Natalini, Turan type inequalities for some special functions, J. Ineq. Pure Appl. Math., 7(1)(2006), Art. 22, 1-5.
  • F. Merovci, Turan type inequalities for p-Polygamma functions, Le Matematiche, LXVIII (2013), Fasc. II, 99-106.
  • K. Nantomah, Some inequalities bounding certain ratios of the (p; k)-Gamma function, New Trends in Mathematical Sciences, 4(4)(2016), 329-336.
  • K. Nantomah. E. Prempeh and S. B. Twum, On a (p; k)-analogue of the Gamma function and some associated Inequalities, Moroccan Journal of Pure and Applied Analysis, 2(2)(2016), 79-90.
  • E. Neuman, Inequalities involving a logarithmically convex function and their applications to special functions, J. Inequal. Pure Appl. Math., 7(1)(2006) Art. 16.
  • C. P. Nilculescu, Convexity according to the geometric mean, Mathematical Inequalities and Applications, 3(2)(2000), 155-167.
  • C. Niculescu and L. E. Persson, Convex Functions and their Applications, A Contemporary Approach, CMS Books in Mathematics, Vol. 23, Springer-Verlag, New York, 2006.
  • J. Sandor, Selected Chapters of Geometry, Analysis and Number Theory, RGMIA Mono- graphs, Victoria University, 2005.
  • Xiao-Ming Zhang, Tie-Quan Xu and Ling-bo Situ, Geometric convexity of a function in- volving Gamma function and application to inequality theory, J. Inequal. Pure Appl. Math., 8(1)(2007), Art. 17.
  • Current address : Kwara Nantomah: Department of Mathematics, Faculty of Mathematical Sciences, University for Development Studies, Navrongo Campus, P. O. Box 24, Navrongo, UE/R, Ghana.
  • E-mail address : mykwarasoft@yahoo.com, knantomah@uds.edu.gh
There are 18 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Kwara Nantomah This is me

Publication Date August 1, 2017
Published in Issue Year 2017 Volume: 66 Issue: 2

Cite

APA Nantomah, K. (2017). CONVEXITY PROPERTIES AND INEQUALITIES CONCERNING THE(p; k)-GAMMA FUNCTION. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(2), 130-140. https://doi.org/10.1501/Commua1_0000000807
AMA Nantomah K. CONVEXITY PROPERTIES AND INEQUALITIES CONCERNING THE(p; k)-GAMMA FUNCTION. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2017;66(2):130-140. doi:10.1501/Commua1_0000000807
Chicago Nantomah, Kwara. “CONVEXITY PROPERTIES AND INEQUALITIES CONCERNING THE(p; K)-GAMMA FUNCTION”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66, no. 2 (August 2017): 130-40. https://doi.org/10.1501/Commua1_0000000807.
EndNote Nantomah K (August 1, 2017) CONVEXITY PROPERTIES AND INEQUALITIES CONCERNING THE(p; k)-GAMMA FUNCTION. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66 2 130–140.
IEEE K. Nantomah, “CONVEXITY PROPERTIES AND INEQUALITIES CONCERNING THE(p; k)-GAMMA FUNCTION”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 66, no. 2, pp. 130–140, 2017, doi: 10.1501/Commua1_0000000807.
ISNAD Nantomah, Kwara. “CONVEXITY PROPERTIES AND INEQUALITIES CONCERNING THE(p; K)-GAMMA FUNCTION”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66/2 (August 2017), 130-140. https://doi.org/10.1501/Commua1_0000000807.
JAMA Nantomah K. CONVEXITY PROPERTIES AND INEQUALITIES CONCERNING THE(p; k)-GAMMA FUNCTION. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66:130–140.
MLA Nantomah, Kwara. “CONVEXITY PROPERTIES AND INEQUALITIES CONCERNING THE(p; K)-GAMMA FUNCTION”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 66, no. 2, 2017, pp. 130-4, doi:10.1501/Commua1_0000000807.
Vancouver Nantomah K. CONVEXITY PROPERTIES AND INEQUALITIES CONCERNING THE(p; k)-GAMMA FUNCTION. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66(2):130-4.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.