BibTex RIS Cite

STRONGLY -CLEAN PROPERTIES AND RINGS OF FUNCTIONS

Year 2018, Volume: 67 Issue: 1, 102 - 115, 01.02.2018
https://doi.org/10.1501/Commua1_0000000834

Abstract

ARis the sum of a unit and a projection that commute with each other. Inthis paper, we explore strong -cleanness of rings of continuous functions overspectrum spaces. We prove that a -ring R is strongly -clean if and only if Ris an abelian exchange ring and C(X) C (X) is-clean, if and only if R isan abelian exchange ring and the classical ring of quotients q(C(X)) of C(X)is -clean, where X is a spectrum space of R

References

  • F. Azarpanah, When is C(X) a clean ring?, Acta Math. Hungar. 94(2002), 53–58.
  • S.K. Berberian, Baer -Rings, Springer-Verlag, Heidelberg, London, New York, 2011. H. Chen
  • Rings Related Stable Range Conditions, Series in Algebra 11, World Scienti…c, Hackensack, NJ, 2011.
  • H. Chen, A. Harmancı, A.Ç. Özcan, Strongly J -clean rings with involutions, Ring Theory gioR. López-Permouth, ,http://dx.doi.org/10.1090/conm/609/12091. Edited by
  • S. TariqRizvi andCosmin Van Huynh, S. Roman, (609)(2014),123
  • L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, New York, Heidelberg, Berlin, London, 1976.
  • A.W. Hager, C.M. Kimber, Clean rings of continuous functions, Algebra Universalis 56(2007), –92.
  • M.L. Knox, R. Levy, W.W. McGovern, J. Shapiro, Generalizations of complemented rings with applications to rings of functions, J. Algebra Appl. 8(2009), 17-40.
  • C. Li, Y. Zhou, On strongly -clean rings, J. Algebra Appl. 10(2011), 1363-1370.
  • K. Varadarajan, Study of Hop…city in certain classes of rings, Comm. Algebra 28(2000), 783.
  • G.D. Marco, A. Orsatti, Commutative rings in which every prime ideal is contained in a unique maximal ideal, Proc. Amer. Math. Soc. 30 (1971), 459–466.
  • W.W. McGovern, Clean semiprime f -rings with bounded inversion, Comm. Algebra (2003), 3295-3304.
  • W.W. McGovern, Neat rings, J. Pure Appl. Algebra 205(2006), 243-265.
  • A.A. Tuganbaev, Rings Close to Regular, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
  • L. Vas, -Clean rings; some clean and almost clean Baer -rings and von Neumann algebras, J. Algebra 324(2010), 3388-3400.
Year 2018, Volume: 67 Issue: 1, 102 - 115, 01.02.2018
https://doi.org/10.1501/Commua1_0000000834

Abstract

References

  • F. Azarpanah, When is C(X) a clean ring?, Acta Math. Hungar. 94(2002), 53–58.
  • S.K. Berberian, Baer -Rings, Springer-Verlag, Heidelberg, London, New York, 2011. H. Chen
  • Rings Related Stable Range Conditions, Series in Algebra 11, World Scienti…c, Hackensack, NJ, 2011.
  • H. Chen, A. Harmancı, A.Ç. Özcan, Strongly J -clean rings with involutions, Ring Theory gioR. López-Permouth, ,http://dx.doi.org/10.1090/conm/609/12091. Edited by
  • S. TariqRizvi andCosmin Van Huynh, S. Roman, (609)(2014),123
  • L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, New York, Heidelberg, Berlin, London, 1976.
  • A.W. Hager, C.M. Kimber, Clean rings of continuous functions, Algebra Universalis 56(2007), –92.
  • M.L. Knox, R. Levy, W.W. McGovern, J. Shapiro, Generalizations of complemented rings with applications to rings of functions, J. Algebra Appl. 8(2009), 17-40.
  • C. Li, Y. Zhou, On strongly -clean rings, J. Algebra Appl. 10(2011), 1363-1370.
  • K. Varadarajan, Study of Hop…city in certain classes of rings, Comm. Algebra 28(2000), 783.
  • G.D. Marco, A. Orsatti, Commutative rings in which every prime ideal is contained in a unique maximal ideal, Proc. Amer. Math. Soc. 30 (1971), 459–466.
  • W.W. McGovern, Clean semiprime f -rings with bounded inversion, Comm. Algebra (2003), 3295-3304.
  • W.W. McGovern, Neat rings, J. Pure Appl. Algebra 205(2006), 243-265.
  • A.A. Tuganbaev, Rings Close to Regular, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
  • L. Vas, -Clean rings; some clean and almost clean Baer -rings and von Neumann algebras, J. Algebra 324(2010), 3388-3400.
There are 15 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Huanyin Chen This is me

Abdullah Harmancı This is me

Publication Date February 1, 2018
Published in Issue Year 2018 Volume: 67 Issue: 1

Cite

APA Chen, H., & Harmancı, A. (2018). STRONGLY -CLEAN PROPERTIES AND RINGS OF FUNCTIONS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(1), 102-115. https://doi.org/10.1501/Commua1_0000000834
AMA Chen H, Harmancı A. STRONGLY -CLEAN PROPERTIES AND RINGS OF FUNCTIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2018;67(1):102-115. doi:10.1501/Commua1_0000000834
Chicago Chen, Huanyin, and Abdullah Harmancı. “STRONGLY -CLEAN PROPERTIES AND RINGS OF FUNCTIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 1 (February 2018): 102-15. https://doi.org/10.1501/Commua1_0000000834.
EndNote Chen H, Harmancı A (February 1, 2018) STRONGLY -CLEAN PROPERTIES AND RINGS OF FUNCTIONS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 1 102–115.
IEEE H. Chen and A. Harmancı, “STRONGLY -CLEAN PROPERTIES AND RINGS OF FUNCTIONS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 1, pp. 102–115, 2018, doi: 10.1501/Commua1_0000000834.
ISNAD Chen, Huanyin - Harmancı, Abdullah. “STRONGLY -CLEAN PROPERTIES AND RINGS OF FUNCTIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/1 (February 2018), 102-115. https://doi.org/10.1501/Commua1_0000000834.
JAMA Chen H, Harmancı A. STRONGLY -CLEAN PROPERTIES AND RINGS OF FUNCTIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:102–115.
MLA Chen, Huanyin and Abdullah Harmancı. “STRONGLY -CLEAN PROPERTIES AND RINGS OF FUNCTIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 1, 2018, pp. 102-15, doi:10.1501/Commua1_0000000834.
Vancouver Chen H, Harmancı A. STRONGLY -CLEAN PROPERTIES AND RINGS OF FUNCTIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(1):102-15.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.