BibTex RIS Cite

VECTOR MATRIX REPRESENTATION OF OCTONIONS AND THEIR GEOMETRY

Year 2018, Volume: 67 Issue: 1, 161 - 167, 01.02.2018
https://doi.org/10.1501/Commua1_0000000839

Abstract

In this paper we investigate octonions and their special vectormatrix representation. We give some geometrical definitions and propertiesrelated with them. Furthermore, we use the vector matrix representation toshow its advantageous sides

References

  • Gunaydın, Murat; Gursey, Feza. Quark structure and octonions. Journal of Mathematical Physics, 14.11, (1973): 1651-1667.
  • Zorn, Max. Alternativkörper und quadratische Systeme. In: Abhandlungen aus dem Math- ematischen Seminar der Universität Hamburg. Springer Berlin/Heidelberg, (1933): 395-402.
  • Baez, John. The octonions. Bulletin of the American Mathematical Society 39.2 (2002): 145- 205.
  • Schafer, Richard Donald. An introduction to nonassociative algebras. Vol. 22. Courier Cor- poration, 1966.
  • Ward, Joseph Patrick.Quaternions and Cayley numbers: Algebra and applications. Springer Science and Business Media, 2012.
  • Gursey, F. Tze, C. H., On the role of division, Jordan and related algebras in particle physics World Scienti…c, (1996).
  • Conway, John H.; Smith, Derek A. On quaternions and octonions. AMC, 2003, 10: 12.
  • Okubo, Susumo. Introduction to octonion and other non-associative algebras in physics. Cambridge University Press, 1995.
  • Smith, Jonathan DH. An introduction to quasigroups and their representations. CRC Press, 2006.
Year 2018, Volume: 67 Issue: 1, 161 - 167, 01.02.2018
https://doi.org/10.1501/Commua1_0000000839

Abstract

References

  • Gunaydın, Murat; Gursey, Feza. Quark structure and octonions. Journal of Mathematical Physics, 14.11, (1973): 1651-1667.
  • Zorn, Max. Alternativkörper und quadratische Systeme. In: Abhandlungen aus dem Math- ematischen Seminar der Universität Hamburg. Springer Berlin/Heidelberg, (1933): 395-402.
  • Baez, John. The octonions. Bulletin of the American Mathematical Society 39.2 (2002): 145- 205.
  • Schafer, Richard Donald. An introduction to nonassociative algebras. Vol. 22. Courier Cor- poration, 1966.
  • Ward, Joseph Patrick.Quaternions and Cayley numbers: Algebra and applications. Springer Science and Business Media, 2012.
  • Gursey, F. Tze, C. H., On the role of division, Jordan and related algebras in particle physics World Scienti…c, (1996).
  • Conway, John H.; Smith, Derek A. On quaternions and octonions. AMC, 2003, 10: 12.
  • Okubo, Susumo. Introduction to octonion and other non-associative algebras in physics. Cambridge University Press, 1995.
  • Smith, Jonathan DH. An introduction to quasigroups and their representations. CRC Press, 2006.
There are 9 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Adnan Karataş This is me

Serpil Halıcı This is me

Publication Date February 1, 2018
Published in Issue Year 2018 Volume: 67 Issue: 1

Cite

APA Karataş, A., & Halıcı, S. (2018). VECTOR MATRIX REPRESENTATION OF OCTONIONS AND THEIR GEOMETRY. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(1), 161-167. https://doi.org/10.1501/Commua1_0000000839
AMA Karataş A, Halıcı S. VECTOR MATRIX REPRESENTATION OF OCTONIONS AND THEIR GEOMETRY. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2018;67(1):161-167. doi:10.1501/Commua1_0000000839
Chicago Karataş, Adnan, and Serpil Halıcı. “VECTOR MATRIX REPRESENTATION OF OCTONIONS AND THEIR GEOMETRY”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 1 (February 2018): 161-67. https://doi.org/10.1501/Commua1_0000000839.
EndNote Karataş A, Halıcı S (February 1, 2018) VECTOR MATRIX REPRESENTATION OF OCTONIONS AND THEIR GEOMETRY. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 1 161–167.
IEEE A. Karataş and S. Halıcı, “VECTOR MATRIX REPRESENTATION OF OCTONIONS AND THEIR GEOMETRY”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 1, pp. 161–167, 2018, doi: 10.1501/Commua1_0000000839.
ISNAD Karataş, Adnan - Halıcı, Serpil. “VECTOR MATRIX REPRESENTATION OF OCTONIONS AND THEIR GEOMETRY”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/1 (February 2018), 161-167. https://doi.org/10.1501/Commua1_0000000839.
JAMA Karataş A, Halıcı S. VECTOR MATRIX REPRESENTATION OF OCTONIONS AND THEIR GEOMETRY. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:161–167.
MLA Karataş, Adnan and Serpil Halıcı. “VECTOR MATRIX REPRESENTATION OF OCTONIONS AND THEIR GEOMETRY”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 1, 2018, pp. 161-7, doi:10.1501/Commua1_0000000839.
Vancouver Karataş A, Halıcı S. VECTOR MATRIX REPRESENTATION OF OCTONIONS AND THEIR GEOMETRY. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(1):161-7.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.