Research Article
BibTex RIS Cite
Year 2018, Volume: 67 Issue: 1, 235 - 241, 01.02.2018
https://doi.org/10.1501/Commua1_0000000845

Abstract

References

  • Ahmad, Z.U. and Mursaleen, M. An application of Banach limits, Proc. Amer. Math. Soc. , (1988), 244-246.
  • Altinok, H. Altin, Y. I¸sik, M. The sequence space BV (M; p; q; s) on seminormed spaces. Indian J. Pure Appl. Math. 39(1) (2008), 49–58
  • Banach, S. Theorie des Operations Linearies, Warszawa, 1932.
  • Bhardwaj, V.K. A generalization of a sequence space of Ruckle, Bull. Calcutta Math. Soc. (5) (2003), 411-420.
  • Et, M. Spaces of Cesàro diğerence sequences of order r de…ned by a modulus function in a locally convex space. Taiwanese J. Math. 10(4) (2006), 865–879.
  • Et, M. : Strongly almost summable diğerence sequences of order m de…ned by a modulus. Studia Sci. Math. Hungar. 40(4) (2003), 463–476.
  • Freedman, A.R. Sember, J. J. Raphael, M. Some Cesàro-type summability spaces. Proc. London Math. Soc. 3(3) 37 (1978), 508–520.
  • I¸sik, M. Generalized vector-valued sequence spaces de…ned by modulus functions. J. Inequal. Appl. 2010, Art. ID 457892, 7 pp.
  • I¸sik, M. Strongly almost (w; ; q) summable sequences. Math. Slovaca. 61(5) (2011), 779–
  • Karakaya, V. and Sava¸s, E. On almost p bounded variation of lacunary sequences. Comput. Math. Appl. 61(6) (2011), 1502–1506.
  • Lorentz, G. G. A contribution the theory of divergent series, Acta Math. 80 (1948), 167-190.
  • Maddox.I. J. Sequence spaces de…ned by a modulus, Math. Proc. Camb. Phil. Soc. 100 (1986), 166.
  • Mohiuddine, S. A. An application of almost convergence in approximation theorems. Appl. Math. Lett. 24 (2011), no. 11, 1856–1860
  • Mohiuddine, S. A. Matrix transformations of paranormed sequence spaces through de la Vallee-Pousion mean, Acta Scientiarum,Technology,37(1) (2015),71-75.
  • Mursaleen, M. Mohiuddine, S. A. Some matrix transformations of convex and paranormed sequence spaces into the spaces of invariant means. J. Funct. Spaces Appl. 2012, Art. ID , 10 pp
  • Mursaleen, M. On some new invariant matrix methods of summability, Quart. J. Math. Oxford 34(2), (1983), 77-86.
  • Mursaleen, M. Matrix transformations between some new sequence spaces, Houston J. Math. , (1983), 505-509.
  • Nakano,H. Concave modulars, J. Math. Soc. Japan. 5 (1953), 29-49.
  • Nanda, S. and Nayak, K. C. Some new sequence spaces, Indian J.Pure Appl.Math. 9(8) (1978) 846.
  • Raimi, R. A. Invariant means and invariant matrix method of summability, Duke Math. J. , (1963), 81-94.
  • Ruckle,W. H. FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973-978.
  • Sava¸s, E. and Patterson, R. F. Double sequence spaces de…ned by a modulus. Math. Slovaca (2) (2011), 245–256.
  • Sava¸s, E. On some new double sequence spaces de…ned by a modulus. Appl. Math. Comput. (1) (2007), 417–424.
  • Schaefer, P. In…nite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), 104
  • Wilansky, A. Functional Analysis, Blaisdell Publishing Company, New York, 1964.
  • Current address : Harran University, Faculty of Education, Sanliurfa-TURKEY E-mail address : misik63@yahoo.com

SOME PROPERTIES OF SEQUENCE SPACE _ BV (f; p; q; s)

Year 2018, Volume: 67 Issue: 1, 235 - 241, 01.02.2018
https://doi.org/10.1501/Commua1_0000000845

Abstract

Let `1 and c denote the Banach spaces of real bounded and convergent sequences
x = (xn) normed by kxk = sup
n
jxnj ; respectively.
Let be a one to one mapping of the set of positive integers into itself such that

k
(n) =


k1
(n)

; k = 1; 2; ::: .A continuous linear functional ' on `1 is said
to be an invariant mean or a mean if and only if
(i) ' (x) 0 when xn 0 for all n;
(ii) ' (e) = 1; where e = (1; 1; 1; :::) and
(iii) '
x(n)
= ' (fxng) for all x 2 `1:
If is the translation mapping n ! n + 1; a mean is often called a Banach
limit [3], and V is the set of convergent sequences, that is, the set of bounded
sequences all of whose invariant means are equal, is the set ^f of almost convergent
sequences

References

  • Ahmad, Z.U. and Mursaleen, M. An application of Banach limits, Proc. Amer. Math. Soc. , (1988), 244-246.
  • Altinok, H. Altin, Y. I¸sik, M. The sequence space BV (M; p; q; s) on seminormed spaces. Indian J. Pure Appl. Math. 39(1) (2008), 49–58
  • Banach, S. Theorie des Operations Linearies, Warszawa, 1932.
  • Bhardwaj, V.K. A generalization of a sequence space of Ruckle, Bull. Calcutta Math. Soc. (5) (2003), 411-420.
  • Et, M. Spaces of Cesàro diğerence sequences of order r de…ned by a modulus function in a locally convex space. Taiwanese J. Math. 10(4) (2006), 865–879.
  • Et, M. : Strongly almost summable diğerence sequences of order m de…ned by a modulus. Studia Sci. Math. Hungar. 40(4) (2003), 463–476.
  • Freedman, A.R. Sember, J. J. Raphael, M. Some Cesàro-type summability spaces. Proc. London Math. Soc. 3(3) 37 (1978), 508–520.
  • I¸sik, M. Generalized vector-valued sequence spaces de…ned by modulus functions. J. Inequal. Appl. 2010, Art. ID 457892, 7 pp.
  • I¸sik, M. Strongly almost (w; ; q) summable sequences. Math. Slovaca. 61(5) (2011), 779–
  • Karakaya, V. and Sava¸s, E. On almost p bounded variation of lacunary sequences. Comput. Math. Appl. 61(6) (2011), 1502–1506.
  • Lorentz, G. G. A contribution the theory of divergent series, Acta Math. 80 (1948), 167-190.
  • Maddox.I. J. Sequence spaces de…ned by a modulus, Math. Proc. Camb. Phil. Soc. 100 (1986), 166.
  • Mohiuddine, S. A. An application of almost convergence in approximation theorems. Appl. Math. Lett. 24 (2011), no. 11, 1856–1860
  • Mohiuddine, S. A. Matrix transformations of paranormed sequence spaces through de la Vallee-Pousion mean, Acta Scientiarum,Technology,37(1) (2015),71-75.
  • Mursaleen, M. Mohiuddine, S. A. Some matrix transformations of convex and paranormed sequence spaces into the spaces of invariant means. J. Funct. Spaces Appl. 2012, Art. ID , 10 pp
  • Mursaleen, M. On some new invariant matrix methods of summability, Quart. J. Math. Oxford 34(2), (1983), 77-86.
  • Mursaleen, M. Matrix transformations between some new sequence spaces, Houston J. Math. , (1983), 505-509.
  • Nakano,H. Concave modulars, J. Math. Soc. Japan. 5 (1953), 29-49.
  • Nanda, S. and Nayak, K. C. Some new sequence spaces, Indian J.Pure Appl.Math. 9(8) (1978) 846.
  • Raimi, R. A. Invariant means and invariant matrix method of summability, Duke Math. J. , (1963), 81-94.
  • Ruckle,W. H. FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973-978.
  • Sava¸s, E. and Patterson, R. F. Double sequence spaces de…ned by a modulus. Math. Slovaca (2) (2011), 245–256.
  • Sava¸s, E. On some new double sequence spaces de…ned by a modulus. Appl. Math. Comput. (1) (2007), 417–424.
  • Schaefer, P. In…nite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), 104
  • Wilansky, A. Functional Analysis, Blaisdell Publishing Company, New York, 1964.
  • Current address : Harran University, Faculty of Education, Sanliurfa-TURKEY E-mail address : misik63@yahoo.com
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Mahmut Işık This is me

Publication Date February 1, 2018
Submission Date May 12, 2014
Published in Issue Year 2018 Volume: 67 Issue: 1

Cite

APA Işık, M. (2018). SOME PROPERTIES OF SEQUENCE SPACE _ BV (f; p; q; s). Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(1), 235-241. https://doi.org/10.1501/Commua1_0000000845
AMA Işık M. SOME PROPERTIES OF SEQUENCE SPACE _ BV (f; p; q; s). Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2018;67(1):235-241. doi:10.1501/Commua1_0000000845
Chicago Işık, Mahmut. “SOME PROPERTIES OF SEQUENCE SPACE _ BV (f; P; Q; S)”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 1 (February 2018): 235-41. https://doi.org/10.1501/Commua1_0000000845.
EndNote Işık M (February 1, 2018) SOME PROPERTIES OF SEQUENCE SPACE _ BV (f; p; q; s). Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 1 235–241.
IEEE M. Işık, “SOME PROPERTIES OF SEQUENCE SPACE _ BV (f; p; q; s)”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 1, pp. 235–241, 2018, doi: 10.1501/Commua1_0000000845.
ISNAD Işık, Mahmut. “SOME PROPERTIES OF SEQUENCE SPACE _ BV (f; P; Q; S)”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/1 (February 2018), 235-241. https://doi.org/10.1501/Commua1_0000000845.
JAMA Işık M. SOME PROPERTIES OF SEQUENCE SPACE _ BV (f; p; q; s). Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:235–241.
MLA Işık, Mahmut. “SOME PROPERTIES OF SEQUENCE SPACE _ BV (f; P; Q; S)”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 1, 2018, pp. 235-41, doi:10.1501/Commua1_0000000845.
Vancouver Işık M. SOME PROPERTIES OF SEQUENCE SPACE _ BV (f; p; q; s). Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(1):235-41.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.