BibTex RIS Cite

ZERO-BASED INVARIANT SUBSPACES IN THE BERGMAN SPACE

Year 2018, Volume: 67 Issue: 1, 277 - 285, 01.02.2018
https://doi.org/10.1501/Commua1_0000000849

Abstract

It is known that Beurling’s theorem concerning invariant subspaces is not true in the Bergman space (in contrast to the Hardy space case).However, Aleman, Richter, and Sundberge proved that every cyclic invariantasubspace in the Bergman space Lp(D), 0 < p < +1, is generated by its extremal function. This implies, in particular, that for every zero-based invariantsubspace in the Bergman space the Beurling’s theorem stands true. Here, wecalculate the reproducing kernel of the zero-based invariant subspace Mninathe Bergman space L2(D) where the associated wandering subspace Mnis one-dimensional, and spanned by the unit vector Gn(z) =zMn p n + 1zn

References

  • Abkar, A., A Beuling-type theorem in Bergman spaces, Turk J Math (2011), 35, 711-716.
  • Apostol, C., Bercovici, H., Foias, C. and Pearcy, C. , Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra, I
  • J.Funct. Anal, (1985), 63:3, 369-404.
  • Aleman, A., Richter, S. and Sundberg, C., Beurling’s theorem for the Bergman space. Acta Math (1996), 177, 275-310.
  • Duren, P., Khavinson, D., Shapiro, H. S. andSundberg, C., Contractive zero-divisors in Bergman spaces, Paci…c J. Math, (1993), 157, 37-56.
  • Hedenmalm, H., Resent progress in the function theory of the Bergman space. Holomorphic spaces MSRI publications (1998), 33, 35-50.
  • Hedenmalm, H., A factoring theorem for the Bergman space, Bull. London Math. Soc, (1994), 26, 113-126.
  • Hedenmalm, H., Korenblum, B. and Zhu, K., Theory of Bergman spaces, New York, Springerâe“Verlag, Graduate Texts in Mathematics (2000), 199.
  • Khavinson, D. and Shapiro, H. S., Invariant subspaces in Bergman spaces and Hedenmalm’s boundary value problem, Ark. Mat, (1994), 32, 309-321 .
  • MacLane, G. R., Holomorphic functions, of arbitrarily slow growth, without radial limits, Michigan Math, (1962), 9, 21-24. Current address : Bouabdallah Fatiha: Laboratory of Pure and Applied Mathematics, Laghouat
  • University, ALGERIA E-mail address : f.bouabdallah@lagh-univ.dz ORCID: http://orcid.org/0000-0002-4890-3386 Current address : Bendaoud Zohra: Laboratory of Pure and Applied Mathematics, Laghouat
  • University, ALGERIA E-mail address : z.bendaoud@lagh-univ.dz
Year 2018, Volume: 67 Issue: 1, 277 - 285, 01.02.2018
https://doi.org/10.1501/Commua1_0000000849

Abstract

References

  • Abkar, A., A Beuling-type theorem in Bergman spaces, Turk J Math (2011), 35, 711-716.
  • Apostol, C., Bercovici, H., Foias, C. and Pearcy, C. , Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra, I
  • J.Funct. Anal, (1985), 63:3, 369-404.
  • Aleman, A., Richter, S. and Sundberg, C., Beurling’s theorem for the Bergman space. Acta Math (1996), 177, 275-310.
  • Duren, P., Khavinson, D., Shapiro, H. S. andSundberg, C., Contractive zero-divisors in Bergman spaces, Paci…c J. Math, (1993), 157, 37-56.
  • Hedenmalm, H., Resent progress in the function theory of the Bergman space. Holomorphic spaces MSRI publications (1998), 33, 35-50.
  • Hedenmalm, H., A factoring theorem for the Bergman space, Bull. London Math. Soc, (1994), 26, 113-126.
  • Hedenmalm, H., Korenblum, B. and Zhu, K., Theory of Bergman spaces, New York, Springerâe“Verlag, Graduate Texts in Mathematics (2000), 199.
  • Khavinson, D. and Shapiro, H. S., Invariant subspaces in Bergman spaces and Hedenmalm’s boundary value problem, Ark. Mat, (1994), 32, 309-321 .
  • MacLane, G. R., Holomorphic functions, of arbitrarily slow growth, without radial limits, Michigan Math, (1962), 9, 21-24. Current address : Bouabdallah Fatiha: Laboratory of Pure and Applied Mathematics, Laghouat
  • University, ALGERIA E-mail address : f.bouabdallah@lagh-univ.dz ORCID: http://orcid.org/0000-0002-4890-3386 Current address : Bendaoud Zohra: Laboratory of Pure and Applied Mathematics, Laghouat
  • University, ALGERIA E-mail address : z.bendaoud@lagh-univ.dz
There are 12 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Bouabdallah Fatıha This is me

Bendaoud Zohra This is me

Publication Date February 1, 2018
Published in Issue Year 2018 Volume: 67 Issue: 1

Cite

APA Fatıha, B., & Zohra, B. (2018). ZERO-BASED INVARIANT SUBSPACES IN THE BERGMAN SPACE. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(1), 277-285. https://doi.org/10.1501/Commua1_0000000849
AMA Fatıha B, Zohra B. ZERO-BASED INVARIANT SUBSPACES IN THE BERGMAN SPACE. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2018;67(1):277-285. doi:10.1501/Commua1_0000000849
Chicago Fatıha, Bouabdallah, and Bendaoud Zohra. “ZERO-BASED INVARIANT SUBSPACES IN THE BERGMAN SPACE”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 1 (February 2018): 277-85. https://doi.org/10.1501/Commua1_0000000849.
EndNote Fatıha B, Zohra B (February 1, 2018) ZERO-BASED INVARIANT SUBSPACES IN THE BERGMAN SPACE. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 1 277–285.
IEEE B. Fatıha and B. Zohra, “ZERO-BASED INVARIANT SUBSPACES IN THE BERGMAN SPACE”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 1, pp. 277–285, 2018, doi: 10.1501/Commua1_0000000849.
ISNAD Fatıha, Bouabdallah - Zohra, Bendaoud. “ZERO-BASED INVARIANT SUBSPACES IN THE BERGMAN SPACE”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/1 (February 2018), 277-285. https://doi.org/10.1501/Commua1_0000000849.
JAMA Fatıha B, Zohra B. ZERO-BASED INVARIANT SUBSPACES IN THE BERGMAN SPACE. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:277–285.
MLA Fatıha, Bouabdallah and Bendaoud Zohra. “ZERO-BASED INVARIANT SUBSPACES IN THE BERGMAN SPACE”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 1, 2018, pp. 277-85, doi:10.1501/Commua1_0000000849.
Vancouver Fatıha B, Zohra B. ZERO-BASED INVARIANT SUBSPACES IN THE BERGMAN SPACE. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(1):277-85.

Cited By

Erratum to: Zero-based invariant subspaces in the Bergman space
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
https://doi.org/10.31801/cfsuasmas.1161813

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.