BibTex RIS Cite

GENERALIZED FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FORm CONVEX AND ( ; m) CONVEX FUNCTIONS

Year 2018, Volume: 67 Issue: 1, 333 - 344, 01.02.2018
https://doi.org/10.1501/Commua1_0000000855

References

  • Agarwal, R.P., Luo, M.-J., and Raina, R.K., On Ostrowski type inequalities, Fasciculi Math- ematici, 204 (2016), 5-27.
  • Alomari, M., and Darus, M., On the Hadamard’s inequality for log-convex functions on the coordinates, Journal of Inequalities and Applications, vol. 2009, Article ID 283147, 13 pages
  • Azpeitia, A.G., Convex functions and the Hadamard inequality, Rev. Colombiana Math., 28 (1994), 7-12.
  • Bakula, M.K., Özdemir, M.E., Peµcari´c, J., Hadamard tpye inequalities for m convex and ( ; m)-convex functions, J. Ineq. Pure and Appl. Math., 9(4) (2008), Art. 96.
  • Bakula, M.K., and Peµcari´c, J., Note on some Hadamard-type inequalities, Journal of Inequal- ities in Pure and Applied Mathematics, vol. 5, no. 3, article 74, 2004.
  • Chen, F., On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Chinese J. Math., Article ID 173923, 7 pages, 2014.
  • Dragomir, S.S., and Pearce, C.E.M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
  • Dragomir, S.S., On some new inequalities of Hermite-Hadamard type for m convex func- tions, Tamkang J. Math., 3(1) (2002).
  • Mihesan, V.G., A Generalization of the Convexity, Seminar of Functional Equations, Ap- prox. and Convex, Cluj-Napoca, Romania, 1993.
  • Özdemir, M.E., Avci, M. and Set, E., On some inequalities of Hermite-Hadamard type via m-convexity, Applied Mathematics Letters, vol. 23, no. 9, pp. 1065–1070, 2010.
  • Peµcari´c, J.E., Proschan, F., Tong, Y.L., Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
  • Raina, R.K., On generalized Wright’s hypergeometric functions and fractional calculus oper- ators, East Asian Math. J., 21(2) (2005), 191-203.
  • Set, E., Özdemir, M.E. and Dragomir, S.S., On the Hermite-Hadamard inequality and other integral inequalities involving two functions, Journal of Inequalities and Applications, Article ID 148102, 9 pages, 2010.
  • Set, E., Özdemir, M.E. and Dragomir, S.S., On Hadamard-Type inequalities involving several kinds of convexity, Journal of Inequalities and Applications, Article ID 286845, 12 pages, 2010. new Set, E., Choi, J., Çelik, B., A approach integral ResearchGate, Hadamard https://www.researchgate.net/publication/313437121. using fractional operator
  • Set, E., Noor, M.A., Awan, M.U., Gözpınar, A., Some new generalized Hermite-Hadamard type inequalities for convex functions involving fractional integral operators, Journal of In- equalities and Applications, 2017:169; http://dx.doi.org/10.1186/s13660-017-1444-6 (2017).
  • Toader, G., Some generalizations of the convexity, Proceedings of The Colloquium On Ap- proximation And Optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1985, 329-338.
  • Usta, F., Budak, H., Sarıkaya, M.Z. and Set, E., On generalization of trapezoid type inequal- ities for s-convex functions with generalized fractional integral operators, Filomat, accepted for publication. Yaldız, H., Sarıkaya, M.Z., On the Hermite-Hadamard type inequalities for fractional integral operator, ResearchGate, https://www.researchgate.net/publication/309824275.
  • Current address : Erhan SET: Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey E-mail address : erhanset@yahoo.com ORCID: orcid.org/0000-0003-1364-5396
  • Current address : Barı¸s ÇEL·IK: Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey E-mail address : bariscelik15@hotmail.com ORCID: orcid.org/0000-0001-5372-7543
Year 2018, Volume: 67 Issue: 1, 333 - 344, 01.02.2018
https://doi.org/10.1501/Commua1_0000000855

References

  • Agarwal, R.P., Luo, M.-J., and Raina, R.K., On Ostrowski type inequalities, Fasciculi Math- ematici, 204 (2016), 5-27.
  • Alomari, M., and Darus, M., On the Hadamard’s inequality for log-convex functions on the coordinates, Journal of Inequalities and Applications, vol. 2009, Article ID 283147, 13 pages
  • Azpeitia, A.G., Convex functions and the Hadamard inequality, Rev. Colombiana Math., 28 (1994), 7-12.
  • Bakula, M.K., Özdemir, M.E., Peµcari´c, J., Hadamard tpye inequalities for m convex and ( ; m)-convex functions, J. Ineq. Pure and Appl. Math., 9(4) (2008), Art. 96.
  • Bakula, M.K., and Peµcari´c, J., Note on some Hadamard-type inequalities, Journal of Inequal- ities in Pure and Applied Mathematics, vol. 5, no. 3, article 74, 2004.
  • Chen, F., On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Chinese J. Math., Article ID 173923, 7 pages, 2014.
  • Dragomir, S.S., and Pearce, C.E.M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
  • Dragomir, S.S., On some new inequalities of Hermite-Hadamard type for m convex func- tions, Tamkang J. Math., 3(1) (2002).
  • Mihesan, V.G., A Generalization of the Convexity, Seminar of Functional Equations, Ap- prox. and Convex, Cluj-Napoca, Romania, 1993.
  • Özdemir, M.E., Avci, M. and Set, E., On some inequalities of Hermite-Hadamard type via m-convexity, Applied Mathematics Letters, vol. 23, no. 9, pp. 1065–1070, 2010.
  • Peµcari´c, J.E., Proschan, F., Tong, Y.L., Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
  • Raina, R.K., On generalized Wright’s hypergeometric functions and fractional calculus oper- ators, East Asian Math. J., 21(2) (2005), 191-203.
  • Set, E., Özdemir, M.E. and Dragomir, S.S., On the Hermite-Hadamard inequality and other integral inequalities involving two functions, Journal of Inequalities and Applications, Article ID 148102, 9 pages, 2010.
  • Set, E., Özdemir, M.E. and Dragomir, S.S., On Hadamard-Type inequalities involving several kinds of convexity, Journal of Inequalities and Applications, Article ID 286845, 12 pages, 2010. new Set, E., Choi, J., Çelik, B., A approach integral ResearchGate, Hadamard https://www.researchgate.net/publication/313437121. using fractional operator
  • Set, E., Noor, M.A., Awan, M.U., Gözpınar, A., Some new generalized Hermite-Hadamard type inequalities for convex functions involving fractional integral operators, Journal of In- equalities and Applications, 2017:169; http://dx.doi.org/10.1186/s13660-017-1444-6 (2017).
  • Toader, G., Some generalizations of the convexity, Proceedings of The Colloquium On Ap- proximation And Optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1985, 329-338.
  • Usta, F., Budak, H., Sarıkaya, M.Z. and Set, E., On generalization of trapezoid type inequal- ities for s-convex functions with generalized fractional integral operators, Filomat, accepted for publication. Yaldız, H., Sarıkaya, M.Z., On the Hermite-Hadamard type inequalities for fractional integral operator, ResearchGate, https://www.researchgate.net/publication/309824275.
  • Current address : Erhan SET: Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey E-mail address : erhanset@yahoo.com ORCID: orcid.org/0000-0003-1364-5396
  • Current address : Barı¸s ÇEL·IK: Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey E-mail address : bariscelik15@hotmail.com ORCID: orcid.org/0000-0001-5372-7543
There are 19 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Erhan Set This is me

Barış Çelik This is me

Publication Date February 1, 2018
Published in Issue Year 2018 Volume: 67 Issue: 1

Cite

APA Set, E., & Çelik, B. (2018). GENERALIZED FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FORm CONVEX AND ( ; m) CONVEX FUNCTIONS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(1), 333-344. https://doi.org/10.1501/Commua1_0000000855
AMA Set E, Çelik B. GENERALIZED FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FORm CONVEX AND ( ; m) CONVEX FUNCTIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2018;67(1):333-344. doi:10.1501/Commua1_0000000855
Chicago Set, Erhan, and Barış Çelik. “GENERALIZED FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FORm CONVEX AND ( ; M) CONVEX FUNCTIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 1 (February 2018): 333-44. https://doi.org/10.1501/Commua1_0000000855.
EndNote Set E, Çelik B (February 1, 2018) GENERALIZED FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FORm CONVEX AND ( ; m) CONVEX FUNCTIONS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 1 333–344.
IEEE E. Set and B. Çelik, “GENERALIZED FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FORm CONVEX AND ( ; m) CONVEX FUNCTIONS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 1, pp. 333–344, 2018, doi: 10.1501/Commua1_0000000855.
ISNAD Set, Erhan - Çelik, Barış. “GENERALIZED FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FORm CONVEX AND ( ; M) CONVEX FUNCTIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/1 (February 2018), 333-344. https://doi.org/10.1501/Commua1_0000000855.
JAMA Set E, Çelik B. GENERALIZED FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FORm CONVEX AND ( ; m) CONVEX FUNCTIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:333–344.
MLA Set, Erhan and Barış Çelik. “GENERALIZED FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FORm CONVEX AND ( ; M) CONVEX FUNCTIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 1, 2018, pp. 333-44, doi:10.1501/Commua1_0000000855.
Vancouver Set E, Çelik B. GENERALIZED FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FORm CONVEX AND ( ; m) CONVEX FUNCTIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(1):333-44.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.