Research Article
BibTex RIS Cite

On Ricci pseudo-symmetric super quasi-Einstein Hermitian manifolds

Year 2020, Volume: 69 Issue: 1, 172 - 182, 30.06.2020
https://doi.org/10.31801/cfsuasmas.432858

Abstract

The present paper deals the study of a Bochner Ricci pseudosymmetric super quasi-Einstein Hermitian manifold and a holomorphically projective Ricci pseudo-symmetric super quasi-Einstein Hermitian manifold.

References

  • Shaikh, A. A., On pseudo quasi Einstein manifold, Period. Math. Hungar., 59(2009),119-146.
  • Walker, A. G., On Ruse's spaces of recurrent curvature. Proc. London Math. Soc. 52(1950), 36-64.
  • Besse, A. L., Einstein manifolds, Ergeb. Math. Grenzgeb., 3 Folge, Bd. 10, Berlin, Heidelberg, New York: Springer-Verlag, 1987.
  • Chaturvedi, B. B. and Gupta, B. K., On Bochner Ricci semi-symmetric Hermitian manifold, Acta Math. Univ. Comenianae, 87, 1 (2018), 25-34.
  • Gupta, B. K., Chaturvedi, B. B. and Lone, M. A., On Ricci semi-symmetric mixed super quasi-Einstein Hermitian manifold, Differential Geometry-Dynamical Systems, 20 (2018), 72-82.
  • Özgür, C. and Sular, S., On N(k)-quasi-Einstein manifolds satisfying certain conditions, Balkan J. Geom. Appl., 13(2008), 74-79.
  • Prakasha, D. G. and Venkatesha, H., Some results on generalised quasi-Einstein manifolds, Chinese Journal of Mathematics (Hindawi Publishing Corporation), 2014.
  • Chaki, M. C. and Maity, R. K., On quasi-Einstein manifolds, Publ. Math. Debrecen, 57(2000), 297-306.
  • Chaki, M. C., On generalized quasi-Einstein manifolds, Publ. Math. Debrecen, 58(2001), 683-691.
  • Chaki, M.C., On super quasi-Einstein manifold, Publ. Math. Debrecen, 64(2004), 481-488.
  • Tripathi, M. M. and Kim, J.S., On N(k)-quasi-Einstein manifolds, Commun. Korean Math. Soc., 22(3)2007, 411-417.
  • Deszcz, R., On pseudo symmetric spaces, Bull. Soc. Math. Belg. Ser. A 44(1992)1-34.
  • Mishra, R. S., On almost Hermite spaces II. Nijenhuis tensor, Indian J. Math. 9 (1967), 161-168.
  • Bochner, S., Curvature and Betti numbers II. Ann. of Math., 50(1949), 77-93.
  • Hui, S. K. and Lemence, R. S., On generalized quasi Einstein manifold admitting W₂-curvature tensor, Int. Journal of Math. Analysis, Vol. 6, 2012, no. 23, 1115 - 1121.
  • Adati, T. and Miyazawa, T., On a Riemannian space with recurrent conformal curvature. Tensor N. S. 18(1967), 348-354.
  • De, U. C. and Ghosh, G. C., On quasi-Einstein and special quasi-Einstein manifolds, Proc.of the Conf. of Mathematics and its applications. Kuwait University, April 5-7 (2004), 178-191.
  • Szabo, Z. I., Structure theorems on Riemannian spaces satisfying R(X,Y).R=0. the local version. J. Diff. Geom. 17(1982), 531-582.
  • Defever, F., Ricci-semisymmetric hypersurfaces, Balkan Journal of Geometry and Its Appl. 5(2000), 81-91.
  • Yano, K., Differential geometry of complex and almost complex spaces, Pergamon Press, New York, 1965.
Year 2020, Volume: 69 Issue: 1, 172 - 182, 30.06.2020
https://doi.org/10.31801/cfsuasmas.432858

Abstract

References

  • Shaikh, A. A., On pseudo quasi Einstein manifold, Period. Math. Hungar., 59(2009),119-146.
  • Walker, A. G., On Ruse's spaces of recurrent curvature. Proc. London Math. Soc. 52(1950), 36-64.
  • Besse, A. L., Einstein manifolds, Ergeb. Math. Grenzgeb., 3 Folge, Bd. 10, Berlin, Heidelberg, New York: Springer-Verlag, 1987.
  • Chaturvedi, B. B. and Gupta, B. K., On Bochner Ricci semi-symmetric Hermitian manifold, Acta Math. Univ. Comenianae, 87, 1 (2018), 25-34.
  • Gupta, B. K., Chaturvedi, B. B. and Lone, M. A., On Ricci semi-symmetric mixed super quasi-Einstein Hermitian manifold, Differential Geometry-Dynamical Systems, 20 (2018), 72-82.
  • Özgür, C. and Sular, S., On N(k)-quasi-Einstein manifolds satisfying certain conditions, Balkan J. Geom. Appl., 13(2008), 74-79.
  • Prakasha, D. G. and Venkatesha, H., Some results on generalised quasi-Einstein manifolds, Chinese Journal of Mathematics (Hindawi Publishing Corporation), 2014.
  • Chaki, M. C. and Maity, R. K., On quasi-Einstein manifolds, Publ. Math. Debrecen, 57(2000), 297-306.
  • Chaki, M. C., On generalized quasi-Einstein manifolds, Publ. Math. Debrecen, 58(2001), 683-691.
  • Chaki, M.C., On super quasi-Einstein manifold, Publ. Math. Debrecen, 64(2004), 481-488.
  • Tripathi, M. M. and Kim, J.S., On N(k)-quasi-Einstein manifolds, Commun. Korean Math. Soc., 22(3)2007, 411-417.
  • Deszcz, R., On pseudo symmetric spaces, Bull. Soc. Math. Belg. Ser. A 44(1992)1-34.
  • Mishra, R. S., On almost Hermite spaces II. Nijenhuis tensor, Indian J. Math. 9 (1967), 161-168.
  • Bochner, S., Curvature and Betti numbers II. Ann. of Math., 50(1949), 77-93.
  • Hui, S. K. and Lemence, R. S., On generalized quasi Einstein manifold admitting W₂-curvature tensor, Int. Journal of Math. Analysis, Vol. 6, 2012, no. 23, 1115 - 1121.
  • Adati, T. and Miyazawa, T., On a Riemannian space with recurrent conformal curvature. Tensor N. S. 18(1967), 348-354.
  • De, U. C. and Ghosh, G. C., On quasi-Einstein and special quasi-Einstein manifolds, Proc.of the Conf. of Mathematics and its applications. Kuwait University, April 5-7 (2004), 178-191.
  • Szabo, Z. I., Structure theorems on Riemannian spaces satisfying R(X,Y).R=0. the local version. J. Diff. Geom. 17(1982), 531-582.
  • Defever, F., Ricci-semisymmetric hypersurfaces, Balkan Journal of Geometry and Its Appl. 5(2000), 81-91.
  • Yano, K., Differential geometry of complex and almost complex spaces, Pergamon Press, New York, 1965.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Brijesh Gupta

B. B. Chaturvedi This is me

Publication Date June 30, 2020
Submission Date June 11, 2018
Acceptance Date September 30, 2019
Published in Issue Year 2020 Volume: 69 Issue: 1

Cite

APA Gupta, B., & Chaturvedi, B. B. (2020). On Ricci pseudo-symmetric super quasi-Einstein Hermitian manifolds. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 172-182. https://doi.org/10.31801/cfsuasmas.432858
AMA Gupta B, Chaturvedi BB. On Ricci pseudo-symmetric super quasi-Einstein Hermitian manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2020;69(1):172-182. doi:10.31801/cfsuasmas.432858
Chicago Gupta, Brijesh, and B. B. Chaturvedi. “On Ricci Pseudo-Symmetric Super Quasi-Einstein Hermitian Manifolds”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 1 (June 2020): 172-82. https://doi.org/10.31801/cfsuasmas.432858.
EndNote Gupta B, Chaturvedi BB (June 1, 2020) On Ricci pseudo-symmetric super quasi-Einstein Hermitian manifolds. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 172–182.
IEEE B. Gupta and B. B. Chaturvedi, “On Ricci pseudo-symmetric super quasi-Einstein Hermitian manifolds”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 1, pp. 172–182, 2020, doi: 10.31801/cfsuasmas.432858.
ISNAD Gupta, Brijesh - Chaturvedi, B. B. “On Ricci Pseudo-Symmetric Super Quasi-Einstein Hermitian Manifolds”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (June 2020), 172-182. https://doi.org/10.31801/cfsuasmas.432858.
JAMA Gupta B, Chaturvedi BB. On Ricci pseudo-symmetric super quasi-Einstein Hermitian manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:172–182.
MLA Gupta, Brijesh and B. B. Chaturvedi. “On Ricci Pseudo-Symmetric Super Quasi-Einstein Hermitian Manifolds”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 1, 2020, pp. 172-8, doi:10.31801/cfsuasmas.432858.
Vancouver Gupta B, Chaturvedi BB. On Ricci pseudo-symmetric super quasi-Einstein Hermitian manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):172-8.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.