Research Article
BibTex RIS Cite

Pseudo-slant lightlike submanifolds of indefinite Kaehler manifolds

Year 2020, Volume: 69 Issue: 2, 1266 - 1277, 31.12.2020
https://doi.org/10.31801/cfsuasmas.446518

Abstract

In this paper, we introduce the notion of pseudo-slant lightlike submanifolds of indefinite Kaehler manifolds giving characterization theorem with some non-trivial examples of such submanifolds. Integrability conditions of distributions D₁, D₂ and RadTM on pseudo-slant lightlike submanifolds of an indefinite Kaehler manifold have been obtained. We also obtain necessary and sufficient conditions for foliations determined by above distributions to be totally geodesic.                                                                                                                                                                                                                                                                                                                 .

Supporting Institution

This work is financial supported by the Council of Scientific and Industrial Research (C.S.I.R.), India

References

  • Atceken, M., Kilic, E., Semi-Invariant Lightlike Submanidolds of a Semi-Riemannian Product Manifold, Kodai Math. J., 30 (2007), 361-378.
  • Blair, D.E., Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA, 2002.
  • Carriazo, A., New Developments in Slant Submanifolds Theory, Narosa Publishing House, New Delhi, India, 2002.
  • Chen, B. Y., Geometry of Slant Submanifolds, Katholieke Universiteit, Leuven, 1990.
  • Chen, B. Y., Slant immersions, Bull. Austral. Math. Soc., 41 (1990), 135- 147.
  • Chen, B. Y., Tazawa, Y., Slant submanifolds in complex Euclidean spaces, Tokyo J. Math., 14 (1991), 101-120.
  • Duggal, K.L., Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Vol. 364 of Mathematics and its applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
  • Duggal, K.L., Sahin, B., Differential Geomety of Lightlike Submanifolds, Birkhauser Verlag AG, Basel, Boston, Berlin, 2010.
  • Johnson, D.L., Whitt, L.B., Totally Geodesic Foliations, J. Differential Geometry, 15 (1980), 225-235.
  • Kilic, E., Sahin, B., Radical Anti-Invariant Lightlike Submanifolds of Semi-Riemannian Product Manifolds, Turkish J. Math., 32 (2008), 429 - 449.
  • Lotta, A., Slant Submanifolds in Contact geometry, Bull. Math. Soc. Roumanie, 39 (1996), 183-198.
  • O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press New York 1983.
  • Papaghiuc, N., Semi-slant submanifolds of a Kaehlerian manifold, An. Stiint. Al.I.Cuza. Univ. Iasi, 40 (1994), 55-61.
  • Sahin, B., Screen Slant Lightlike Submanifolds, Int. Electronic J. of Geometry, 2 (2009), 41-54.
  • Sahin, B., Slant lightlike submanifolds of indefinite Hermitian manifolds, Balkan Journal of Geometry and Its Appl., 13(1) (2008), 107-119.
  • Sahin, B., Gunes, R., Geodesic CR-lightlike submanifolds, Beitrage Algebra and Geometry, 42(2) (2001), 583-594.
  • Shukla, S.S., Akhilesh Yadav, Pseudo-Slant Lightlike Submanifolds of Indefinite Sasakian Manifolds, An. Stiint. Al. I. Cuza. Univ. Iasi, TOM LXII, 2(2) (2016), 571-583.
  • Shukla, S.S., Akhilesh Yadav, Screen Pseudo-Slant Lightlike Submanifolds of Indefinite Sasakian Manifolds, Mediterian Journal of Mathematics, 13(2) (2016), 789-802.
Year 2020, Volume: 69 Issue: 2, 1266 - 1277, 31.12.2020
https://doi.org/10.31801/cfsuasmas.446518

Abstract

References

  • Atceken, M., Kilic, E., Semi-Invariant Lightlike Submanidolds of a Semi-Riemannian Product Manifold, Kodai Math. J., 30 (2007), 361-378.
  • Blair, D.E., Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA, 2002.
  • Carriazo, A., New Developments in Slant Submanifolds Theory, Narosa Publishing House, New Delhi, India, 2002.
  • Chen, B. Y., Geometry of Slant Submanifolds, Katholieke Universiteit, Leuven, 1990.
  • Chen, B. Y., Slant immersions, Bull. Austral. Math. Soc., 41 (1990), 135- 147.
  • Chen, B. Y., Tazawa, Y., Slant submanifolds in complex Euclidean spaces, Tokyo J. Math., 14 (1991), 101-120.
  • Duggal, K.L., Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Vol. 364 of Mathematics and its applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
  • Duggal, K.L., Sahin, B., Differential Geomety of Lightlike Submanifolds, Birkhauser Verlag AG, Basel, Boston, Berlin, 2010.
  • Johnson, D.L., Whitt, L.B., Totally Geodesic Foliations, J. Differential Geometry, 15 (1980), 225-235.
  • Kilic, E., Sahin, B., Radical Anti-Invariant Lightlike Submanifolds of Semi-Riemannian Product Manifolds, Turkish J. Math., 32 (2008), 429 - 449.
  • Lotta, A., Slant Submanifolds in Contact geometry, Bull. Math. Soc. Roumanie, 39 (1996), 183-198.
  • O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press New York 1983.
  • Papaghiuc, N., Semi-slant submanifolds of a Kaehlerian manifold, An. Stiint. Al.I.Cuza. Univ. Iasi, 40 (1994), 55-61.
  • Sahin, B., Screen Slant Lightlike Submanifolds, Int. Electronic J. of Geometry, 2 (2009), 41-54.
  • Sahin, B., Slant lightlike submanifolds of indefinite Hermitian manifolds, Balkan Journal of Geometry and Its Appl., 13(1) (2008), 107-119.
  • Sahin, B., Gunes, R., Geodesic CR-lightlike submanifolds, Beitrage Algebra and Geometry, 42(2) (2001), 583-594.
  • Shukla, S.S., Akhilesh Yadav, Pseudo-Slant Lightlike Submanifolds of Indefinite Sasakian Manifolds, An. Stiint. Al. I. Cuza. Univ. Iasi, TOM LXII, 2(2) (2016), 571-583.
  • Shukla, S.S., Akhilesh Yadav, Screen Pseudo-Slant Lightlike Submanifolds of Indefinite Sasakian Manifolds, Mediterian Journal of Mathematics, 13(2) (2016), 789-802.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

S.s. Shukla This is me

Akhilesh Yadav 0000-0003-3990-857X

Publication Date December 31, 2020
Submission Date July 21, 2018
Acceptance Date September 19, 2020
Published in Issue Year 2020 Volume: 69 Issue: 2

Cite

APA Shukla, S., & Yadav, A. (2020). Pseudo-slant lightlike submanifolds of indefinite Kaehler manifolds. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(2), 1266-1277. https://doi.org/10.31801/cfsuasmas.446518
AMA Shukla S, Yadav A. Pseudo-slant lightlike submanifolds of indefinite Kaehler manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2020;69(2):1266-1277. doi:10.31801/cfsuasmas.446518
Chicago Shukla, S.s., and Akhilesh Yadav. “Pseudo-Slant Lightlike Submanifolds of Indefinite Kaehler Manifolds”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 2 (December 2020): 1266-77. https://doi.org/10.31801/cfsuasmas.446518.
EndNote Shukla S, Yadav A (December 1, 2020) Pseudo-slant lightlike submanifolds of indefinite Kaehler manifolds. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 2 1266–1277.
IEEE S. Shukla and A. Yadav, “Pseudo-slant lightlike submanifolds of indefinite Kaehler manifolds”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 2, pp. 1266–1277, 2020, doi: 10.31801/cfsuasmas.446518.
ISNAD Shukla, S.s. - Yadav, Akhilesh. “Pseudo-Slant Lightlike Submanifolds of Indefinite Kaehler Manifolds”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/2 (December 2020), 1266-1277. https://doi.org/10.31801/cfsuasmas.446518.
JAMA Shukla S, Yadav A. Pseudo-slant lightlike submanifolds of indefinite Kaehler manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:1266–1277.
MLA Shukla, S.s. and Akhilesh Yadav. “Pseudo-Slant Lightlike Submanifolds of Indefinite Kaehler Manifolds”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 2, 2020, pp. 1266-77, doi:10.31801/cfsuasmas.446518.
Vancouver Shukla S, Yadav A. Pseudo-slant lightlike submanifolds of indefinite Kaehler manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(2):1266-77.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.