Research Article
BibTex RIS Cite
Year 2020, Volume: 69 Issue: 2, 1449 - 1472, 31.12.2020
https://doi.org/10.31801/cfsuasmas.742368

Abstract

References

  • Blum, E., Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. Stud., 63 (1994), 123-145.
  • Brezis, H., Operateurs Maximaux Monotones et Semi-Groups de contractions dans les Espaces de Hilbert , North-Holland Mathematics Studies, no. 5. Notas de Mathematica no. 50, North-Holland, Amsterdam, The Netherlands, 1973.
  • Byrne, C., Censor, Y., Gibali, A., Reich, S., The split common null point problem, J. Nonlinear Convex Anal., 13(4) (2012), 759-775.
  • Censor, Y., Elfving, T., Amultiprojection algorithm using Bregman projections in product space, Numer. Algorithm, 8(1994)221-239.
  • Censor, Y., Bortfeld, T., Martin, B., Trofimov, A., A unified approach for inversion problems in intensity modulated radiation theory, Phys. Med. Biol., 51 (2006), 2353-2365.
  • Censor, Y., Gibali, A., Reich, S., Algorithms for the split variational inequality problem, Numer. Algorithm, 59(2) (2012), 301-323.
  • Chang, S. S., Lee, J., Chan, H. W., An new method for solving equilibrium problem, fixed point problem and variational inequality problem with application to optimization, Nonlinear Analysis, 70 (2009), 3307-3319.
  • Cianciaruso, F., Marino, G., Muglia, L., Yao, Y., A hybrid projection algorithm for finding solution of mixed equilibrium problem and variational inequality problem, Fixed Point Theory Appl., 2010 (2010), 383740.
  • Crombez, G., A hicrarchical presentation of operators with fixed points on Hilbert spaces, Numer. Funct. Anal. Optim., 27 (2006), 259-277.
  • Kazmi, K. R., Rizvi, S. H., Iterative approximation of a common solution of a split generalized equilibrium problem and a fixed point problem for nonexpansive semigroup, Math. Sci., 7 (2013), Art. 1.
  • Kumam, P., Hamphries, U., Katchang, P., Common solution of generalized mixed equilibrium problems, variational inclusions, and common fixed points for nonexpansive semigroups and strictly pseudocontractive mappings, Journal of Applied Mathematics, 2011(2011).
  • Mahdioui, H., Chadli, O., On a system of generalized mixed equilibrium problem involving variational-like inequalities in Banach spaces: existence and algorithmic aspects, Advances in Operations Research, 2012 (2012), 843486.
  • Marino, G., Xu, H.K, A general iterative method for nonexpansive mappings in Hilbert spaces, Math. Appl., 318 (2006), 43.-52.
  • Moudafi, A. The split common fixed poin problem for demicontractive mappings, Invers Probl., 26 (2010), 055007.
  • Moudafi, A., Split monotone variational inclusions, J. Optim. Theory Appl., 150 (2011), 275-283.
  • Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc., 73(4) (1967), 595-597.
  • Suzuki, T., Strong convergence of Krasnoselskii and Mann's type sequences for one parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 305 (2005), 227-239.
  • Takahashi, S., Takahashi, W., Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal., 69 (2008), 1025-1033.
  • Wang, S., On fixed point and variational inclusion problems, Faculty of Sciences and Mathematics, University of Nis, Serbia, 6(2015), 1409-1417.
  • Xu, H. K., Viscosity approximation method for nonexpansive semigroups, J. Math. Anal. Appl., 298 (2004), 279-291.
  • Zhang, Y., Gui, Y., Strong convergence theorem for split equilibrium problem and fixed point problem in Hilbert spaces, Int. Math., 12(9) (2017), 413-427.
  • Zhang, S.-S., Lee, J. H. W., Chan, C. K., Algorithms of common solutions to quasi variational inclusion and fixed point problems, Applied Mathematics and Mechanics, 29(5) (2008), 571-581.

A solution of a viscosity Cesàro mean algorithm

Year 2020, Volume: 69 Issue: 2, 1449 - 1472, 31.12.2020
https://doi.org/10.31801/cfsuasmas.742368

Abstract

Based on the viscosity approximation method, we introduce a new cesaro mean
approximation method for finding a common solution of split generalized equilibrium
problem in real Hilbert spaces. Under certain conditions control on parameters, we
prove a strong convergence theorem for the sequences generated by the proposed
iterative scheme. Some numerical examples are presented to illustrate the convergence
results. Our results can be viewed as a generalization and improvement of various
existing results in the current literature.

References

  • Blum, E., Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. Stud., 63 (1994), 123-145.
  • Brezis, H., Operateurs Maximaux Monotones et Semi-Groups de contractions dans les Espaces de Hilbert , North-Holland Mathematics Studies, no. 5. Notas de Mathematica no. 50, North-Holland, Amsterdam, The Netherlands, 1973.
  • Byrne, C., Censor, Y., Gibali, A., Reich, S., The split common null point problem, J. Nonlinear Convex Anal., 13(4) (2012), 759-775.
  • Censor, Y., Elfving, T., Amultiprojection algorithm using Bregman projections in product space, Numer. Algorithm, 8(1994)221-239.
  • Censor, Y., Bortfeld, T., Martin, B., Trofimov, A., A unified approach for inversion problems in intensity modulated radiation theory, Phys. Med. Biol., 51 (2006), 2353-2365.
  • Censor, Y., Gibali, A., Reich, S., Algorithms for the split variational inequality problem, Numer. Algorithm, 59(2) (2012), 301-323.
  • Chang, S. S., Lee, J., Chan, H. W., An new method for solving equilibrium problem, fixed point problem and variational inequality problem with application to optimization, Nonlinear Analysis, 70 (2009), 3307-3319.
  • Cianciaruso, F., Marino, G., Muglia, L., Yao, Y., A hybrid projection algorithm for finding solution of mixed equilibrium problem and variational inequality problem, Fixed Point Theory Appl., 2010 (2010), 383740.
  • Crombez, G., A hicrarchical presentation of operators with fixed points on Hilbert spaces, Numer. Funct. Anal. Optim., 27 (2006), 259-277.
  • Kazmi, K. R., Rizvi, S. H., Iterative approximation of a common solution of a split generalized equilibrium problem and a fixed point problem for nonexpansive semigroup, Math. Sci., 7 (2013), Art. 1.
  • Kumam, P., Hamphries, U., Katchang, P., Common solution of generalized mixed equilibrium problems, variational inclusions, and common fixed points for nonexpansive semigroups and strictly pseudocontractive mappings, Journal of Applied Mathematics, 2011(2011).
  • Mahdioui, H., Chadli, O., On a system of generalized mixed equilibrium problem involving variational-like inequalities in Banach spaces: existence and algorithmic aspects, Advances in Operations Research, 2012 (2012), 843486.
  • Marino, G., Xu, H.K, A general iterative method for nonexpansive mappings in Hilbert spaces, Math. Appl., 318 (2006), 43.-52.
  • Moudafi, A. The split common fixed poin problem for demicontractive mappings, Invers Probl., 26 (2010), 055007.
  • Moudafi, A., Split monotone variational inclusions, J. Optim. Theory Appl., 150 (2011), 275-283.
  • Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc., 73(4) (1967), 595-597.
  • Suzuki, T., Strong convergence of Krasnoselskii and Mann's type sequences for one parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 305 (2005), 227-239.
  • Takahashi, S., Takahashi, W., Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal., 69 (2008), 1025-1033.
  • Wang, S., On fixed point and variational inclusion problems, Faculty of Sciences and Mathematics, University of Nis, Serbia, 6(2015), 1409-1417.
  • Xu, H. K., Viscosity approximation method for nonexpansive semigroups, J. Math. Anal. Appl., 298 (2004), 279-291.
  • Zhang, Y., Gui, Y., Strong convergence theorem for split equilibrium problem and fixed point problem in Hilbert spaces, Int. Math., 12(9) (2017), 413-427.
  • Zhang, S.-S., Lee, J. H. W., Chan, C. K., Algorithms of common solutions to quasi variational inclusion and fixed point problems, Applied Mathematics and Mechanics, 29(5) (2008), 571-581.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Hamid Reza Sahebi 0000-0002-1944-5670

Publication Date December 31, 2020
Submission Date May 25, 2020
Acceptance Date October 26, 2020
Published in Issue Year 2020 Volume: 69 Issue: 2

Cite

APA Sahebi, H. R. (2020). A solution of a viscosity Cesàro mean algorithm. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(2), 1449-1472. https://doi.org/10.31801/cfsuasmas.742368
AMA Sahebi HR. A solution of a viscosity Cesàro mean algorithm. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2020;69(2):1449-1472. doi:10.31801/cfsuasmas.742368
Chicago Sahebi, Hamid Reza. “A Solution of a Viscosity Cesàro Mean Algorithm”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 2 (December 2020): 1449-72. https://doi.org/10.31801/cfsuasmas.742368.
EndNote Sahebi HR (December 1, 2020) A solution of a viscosity Cesàro mean algorithm. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 2 1449–1472.
IEEE H. R. Sahebi, “A solution of a viscosity Cesàro mean algorithm”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 2, pp. 1449–1472, 2020, doi: 10.31801/cfsuasmas.742368.
ISNAD Sahebi, Hamid Reza. “A Solution of a Viscosity Cesàro Mean Algorithm”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/2 (December 2020), 1449-1472. https://doi.org/10.31801/cfsuasmas.742368.
JAMA Sahebi HR. A solution of a viscosity Cesàro mean algorithm. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:1449–1472.
MLA Sahebi, Hamid Reza. “A Solution of a Viscosity Cesàro Mean Algorithm”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 2, 2020, pp. 1449-72, doi:10.31801/cfsuasmas.742368.
Vancouver Sahebi HR. A solution of a viscosity Cesàro mean algorithm. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(2):1449-72.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.