Year 2021,
Volume: 70 Issue: 1, 216 - 228, 30.06.2021
Nizami Mustafa
,
Semra Korkmaz
References
- Baricz, A., Frasin, A. B., Univalence of integral operators involving Bessel functions, Appl. Math. Lett., 23 (2010), 371-376.
- Becker, J., Löwnersche di¤erentialgleichung und quasikoform fortsetzbare schlichte funktionen, J. Reine Angw. Math., 255 (1972), 23-43 (in German).
- Blezu, D., On univalence criteria, General Mathematics 14 (1) (2006), 87-93.
- Breaz, D., Breaz, N., Srivastava, H. M., An extension of the univalent condition for a family of integral oprator, Appl. Math. Lett., 22 (1) (2009), 41-44.
- Breaz, D., Günay, H. Ö., On the univalence criterion of a general integral operator, J. Inequal. Appl., (2008), Article ID 702715, 8 pages doi:10.1155/2008/702715.
- Mustafa, N., Univalence of certain integral operators involving normalized Wright functions, Commun. Fac. Sci. Univ. Ank. Ser. A 1 Math. Stat., 66 (1) (2017) 19-28.
- Mustafa, N., Yarcan, M., Univalence of certain integral operators involving produced Wright functions, Journal of Scientific and Engineering Research, 5 (5) (2018), 569-577.
- Pascu, N., An improvement of Beckers univalence criterion, Proceedings of the Commemorative Session Simion Stoilow, Brasov, (1987), 43-98.
- Pescar, V., A new generalization of Ahlfor's and Becker's criterion of univalence, Bull. Math. Malaysian Soc. (Second Series), 19 (1996), 53-54.
- Pescar, V., Univalence of certain integral operators, Acta Univ. Apulensis Math. Inform., 12 (2006), 43-48.
- Prajapat, J. K., Certain geometric properties of normalized Bessel functions, Appl. Math. Lett., 24 (2011), 2133-2139.
- Prajapat, J. K., Certain geometric properties of the Wright function, Integral Transform and Special Functions, 26 (3) (2015), 203-212, http://x.doi.org/10.1080/10652469.2014.9833502.
- Wright, E. M., On the coe¢ cients of power series having exponential singularities, J. London Math. Soc., 8 (1933), 71-79.
Univalence criteria of the certain integral operators
Year 2021,
Volume: 70 Issue: 1, 216 - 228, 30.06.2021
Nizami Mustafa
,
Semra Korkmaz
Abstract
In this paper, we give some sufficient conditions for the univalence of some integral operators. For this, we use the Becker's and generalized version of the well known Ahlfor's and Becker's univalence criteria.
References
- Baricz, A., Frasin, A. B., Univalence of integral operators involving Bessel functions, Appl. Math. Lett., 23 (2010), 371-376.
- Becker, J., Löwnersche di¤erentialgleichung und quasikoform fortsetzbare schlichte funktionen, J. Reine Angw. Math., 255 (1972), 23-43 (in German).
- Blezu, D., On univalence criteria, General Mathematics 14 (1) (2006), 87-93.
- Breaz, D., Breaz, N., Srivastava, H. M., An extension of the univalent condition for a family of integral oprator, Appl. Math. Lett., 22 (1) (2009), 41-44.
- Breaz, D., Günay, H. Ö., On the univalence criterion of a general integral operator, J. Inequal. Appl., (2008), Article ID 702715, 8 pages doi:10.1155/2008/702715.
- Mustafa, N., Univalence of certain integral operators involving normalized Wright functions, Commun. Fac. Sci. Univ. Ank. Ser. A 1 Math. Stat., 66 (1) (2017) 19-28.
- Mustafa, N., Yarcan, M., Univalence of certain integral operators involving produced Wright functions, Journal of Scientific and Engineering Research, 5 (5) (2018), 569-577.
- Pascu, N., An improvement of Beckers univalence criterion, Proceedings of the Commemorative Session Simion Stoilow, Brasov, (1987), 43-98.
- Pescar, V., A new generalization of Ahlfor's and Becker's criterion of univalence, Bull. Math. Malaysian Soc. (Second Series), 19 (1996), 53-54.
- Pescar, V., Univalence of certain integral operators, Acta Univ. Apulensis Math. Inform., 12 (2006), 43-48.
- Prajapat, J. K., Certain geometric properties of normalized Bessel functions, Appl. Math. Lett., 24 (2011), 2133-2139.
- Prajapat, J. K., Certain geometric properties of the Wright function, Integral Transform and Special Functions, 26 (3) (2015), 203-212, http://x.doi.org/10.1080/10652469.2014.9833502.
- Wright, E. M., On the coe¢ cients of power series having exponential singularities, J. London Math. Soc., 8 (1933), 71-79.