Research Article
BibTex RIS Cite
Year 2021, Volume: 70 Issue: 1, 229 - 240, 30.06.2021
https://doi.org/10.31801/cfsuasmas.784080

Abstract

References

  • Alb Lupa¸s, A., A note on special fuzzy differential subordinations using multiplier transformation and Ruschewehy derivative, J. Computational Analysis and Applications, 25 (6) (2018), 1116-1124.
  • Alb Lupa¸s, A., Oros, Gh., On special fuzzy differential subordinations using Salagean and Ruscheweyh operators, Applied Mathematics and Computation, 261 (2015), 119-127.
  • Haydar, E. A., On fuzzy differential subordination, Mathematica Moravica,19 (1) (2015), 123-129.
  • Ibrahim, R. W., On the Subordination and Super-Ordination Concepts with Applications, Journal of Computational and Theoretical Nanoscience, 14 (5) (2017), 2248-2254.
  • Gal, S. G., Ban, A. I., Elements of Fuzzy Mathematics, Editura Universitatii din Oradea, 1996. (in Romanian)
  • Miller, S. S., Mocanu, P. T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 298-305.
  • Miller, S. S., Mocanu, P. T., Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-171.
  • Miller, S. S., Mocanu, P. T., Differential Subordinations. Theory and Applications, Marcel Dekker, Inc., New York, Basel, 2000.
  • Oros, G. I., Oros, Gh., The notion of subordination in fuzzy sets theory, General Mathematics, 19 (4) (2011), 97-103.
  • Oros, G. I., Oros, Gh., Fuzzy differential subordination, Acta Universitatis Apulensis, 3 (2012), 55-64.
  • Oros, G. I., Oros, Gh., Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babes-Bolyai Math., 57 (2) (2012), 239-248.
  • Oros G.I., Briot-Bouquet fuzzy differential subordination, Analele Universitatii Oradea, Fasc. Mathematica, 19 (2) (2012), 83-97.
  • Oros, G. I., Oros, Gh., Diaconu R., Differential subordinations obtained with some new integral operators, J. Computational Analysis and Applications, 19 (5) (2015), 904-910.
  • Pommerenke Ch., Univalent Functions, Vanderhoeck and Ruprecht, Gottingen, 1975.
  • Wanas, A. K., Majeed, A. H., Fuzzy differential subordination properties of analytic functions involving generalized differential operator, Sci.Int.(Lahore), 30 (2) (2018), 297-302.

New fuzzy differential subordinations

Year 2021, Volume: 70 Issue: 1, 229 - 240, 30.06.2021
https://doi.org/10.31801/cfsuasmas.784080

Abstract

In this paper, some new fuzzy differential subordinations obtained by using the integral operator Im γ : An →An  introduced in [13] are obtained.

References

  • Alb Lupa¸s, A., A note on special fuzzy differential subordinations using multiplier transformation and Ruschewehy derivative, J. Computational Analysis and Applications, 25 (6) (2018), 1116-1124.
  • Alb Lupa¸s, A., Oros, Gh., On special fuzzy differential subordinations using Salagean and Ruscheweyh operators, Applied Mathematics and Computation, 261 (2015), 119-127.
  • Haydar, E. A., On fuzzy differential subordination, Mathematica Moravica,19 (1) (2015), 123-129.
  • Ibrahim, R. W., On the Subordination and Super-Ordination Concepts with Applications, Journal of Computational and Theoretical Nanoscience, 14 (5) (2017), 2248-2254.
  • Gal, S. G., Ban, A. I., Elements of Fuzzy Mathematics, Editura Universitatii din Oradea, 1996. (in Romanian)
  • Miller, S. S., Mocanu, P. T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 298-305.
  • Miller, S. S., Mocanu, P. T., Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-171.
  • Miller, S. S., Mocanu, P. T., Differential Subordinations. Theory and Applications, Marcel Dekker, Inc., New York, Basel, 2000.
  • Oros, G. I., Oros, Gh., The notion of subordination in fuzzy sets theory, General Mathematics, 19 (4) (2011), 97-103.
  • Oros, G. I., Oros, Gh., Fuzzy differential subordination, Acta Universitatis Apulensis, 3 (2012), 55-64.
  • Oros, G. I., Oros, Gh., Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babes-Bolyai Math., 57 (2) (2012), 239-248.
  • Oros G.I., Briot-Bouquet fuzzy differential subordination, Analele Universitatii Oradea, Fasc. Mathematica, 19 (2) (2012), 83-97.
  • Oros, G. I., Oros, Gh., Diaconu R., Differential subordinations obtained with some new integral operators, J. Computational Analysis and Applications, 19 (5) (2015), 904-910.
  • Pommerenke Ch., Univalent Functions, Vanderhoeck and Ruprecht, Gottingen, 1975.
  • Wanas, A. K., Majeed, A. H., Fuzzy differential subordination properties of analytic functions involving generalized differential operator, Sci.Int.(Lahore), 30 (2) (2018), 297-302.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Georgia İ. Oros 0000-0003-2902-4455

Publication Date June 30, 2021
Submission Date August 22, 2020
Acceptance Date December 18, 2020
Published in Issue Year 2021 Volume: 70 Issue: 1

Cite

APA Oros, G. İ. (2021). New fuzzy differential subordinations. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), 229-240. https://doi.org/10.31801/cfsuasmas.784080
AMA Oros Gİ. New fuzzy differential subordinations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2021;70(1):229-240. doi:10.31801/cfsuasmas.784080
Chicago Oros, Georgia İ. “New Fuzzy Differential Subordinations”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 1 (June 2021): 229-40. https://doi.org/10.31801/cfsuasmas.784080.
EndNote Oros Gİ (June 1, 2021) New fuzzy differential subordinations. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 1 229–240.
IEEE G. İ. Oros, “New fuzzy differential subordinations”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 1, pp. 229–240, 2021, doi: 10.31801/cfsuasmas.784080.
ISNAD Oros, Georgia İ. “New Fuzzy Differential Subordinations”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/1 (June 2021), 229-240. https://doi.org/10.31801/cfsuasmas.784080.
JAMA Oros Gİ. New fuzzy differential subordinations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:229–240.
MLA Oros, Georgia İ. “New Fuzzy Differential Subordinations”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 1, 2021, pp. 229-40, doi:10.31801/cfsuasmas.784080.
Vancouver Oros Gİ. New fuzzy differential subordinations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(1):229-40.

Cited By


















Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.