Research Article
BibTex RIS Cite
Year 2021, Volume: 70 Issue: 2, 965 - 983, 31.12.2021
https://doi.org/10.31801/cfsuasmas.772812

Abstract

References

  • Aboraya, M., A new extension of the Lomax distribution with properties and applications to failure times data, Pakistan Journal of Statistics and Operation Research, 15 (2019), 461-479. https://doi.org/10.18187/pjsor.v15i2.2657
  • Alizadeh, M., Bagheri, S. F., Bahrami Samani, E., Ghobadi, S., Nadarajah, S., Exponentiated power Lindley power series class of distributions: Theory and applications, Communications in Statistics: Simulation and Computation, 47 (2018), 2499-2531. https://doi.org/10.1080/03610918.2017.1350270
  • Alizadeh, M., Ozel, G., Altun, E., Abdi, M., Hamedani, G. G., The odd log-logistic Marshall-Olkin Lindley model for lifetime data, Journal of Statistical Theory and Applications, 16 (2017), 382-400. https://doi.org/10.2991/jsta.2017.16.3.10
  • Almalki, S. J., Yuan, J., A new modified Weibull distribution, Reliability Engineering and System Safety, 111 (2013), 164-170. https://doi.org/10.1016/j.ress.2012.10.018
  • Arnold, B. C., Pareto Distributions, International Cooperative Publishing House, Fairland, Maryland, 1983.
  • Balakrishnan, A. N., Nagaraja, H. N., A First Course in Order Statistics, Wiley-Interscience, New York, 1992. https://doi.org/10.1137/1.9780898719062
  • Cakmakyapan S., Ozel, G., The Lindley family of distributions: properties and applications, Hacettepe Journal of Mathematics and Statistics, 46 (2017), 1113-1137. https://doi.org/10.15672/HJMS.201611615850
  • Cordeiro, G. M., Afify, A. Z., Yousof, H. M., Cakmakyapan, S., Ozel, G., The Lindley Weibull distribution: properties and applications, Anais da Academia Brasileira de Ciencias, 90 (2018), 2579-2598. https://doi.org/10.1590/0001-3765201820170635
  • Efron, B., Logistic regression, survival analysis, and the Kaplan-Meier curve, Journal of the American Statistical Association, 83 (1988), 414-425. https://doi.org/10.1080/01621459.1988.10478612
  • El-Bassiouny, A. H., Abdo, N. F., Shahen, H. S., Exponential Lomax distribution, International Journal of Computer Applications, 121 (2015), 24-29.
  • Ghitany, M. E., Atieh, B., Nadarajah, S., Lindley distribution and its application, Mathematics and Computers in Simulation, 78 (2008), 493-506. https://doi.org/10.1016/j.matcom.2007.06.007
  • Gupta, P. K., Singh, B., Parameter estimation of Lindley distribution with hybrid censored data, International Journal of System Assurance Engineering and Management, 4 (2013), 378-385. https://doi.org/10.1007/s13198-012-0120-y
  • Kumar, U., Klefsjo, B., Granholm, S., Reliability investigation for a fleet of load haul dump machines in a Swedish mine, Reliability Engineering and System Safety, 26 (1989), 341-361. https://doi.org/10.1016/0951-8320(89)90004-5
  • Lemonte, A. J., Cordeiro, G. M., An extended Lomax distribution, Statistics, 47 (2013), 800-816. https://doi.org/10.1080/02331888.2011.568119
  • Lindley, D. V., Fiducial distributions and Bayes theorem, Journal of the Royal Statistical Society, 20 (1958), 102-107. https://doi.org/10.1111/j.2517-6161.1958.tb00278.x
  • Lomax, K. S., Business failures: another example of the analysis of failure data, Journal of the American Statistical Association, 49 (1954), 847-852. https://doi.org10.1080/01621459.1954.10501239
  • Maiti, S. S., Mukherjee, I., On estimation of the PDF and CDF of the Lindley distribution, Communications in Statistics: Simulation and Computation, 47 (2018), 1370-1381. https://doi.org/10.1080/03610918.2017.1311919
  • Maurya, R. K., Tripathi, Y. M., Lodhi, C., Rastogi, M. K., On a generalized Lomax distribution, International Journal of System Assurance Engineering and Management, 10 (2019), 1091-1104. https://doi.org/10.1007/s13198-019-00839-0
  • Maya, R., Irshad, M. R., New extended generalized Lindley distribution: properties and applications, Statistica, 77 (2017), 33-52. https://doi.org/10.6092/issn.1973-2201/6808
  • Mudholkar, G. S., Srivastava, D. K., Kollia, G. D., A generalization of the Weibull distribution with application to the analysis of survival data, Journal of the American Statistical Association, 91 (1996), 1575-1583. https://doi.org/10.1080/01621459.1996.10476725
  • Ozel, G., Alizadeh, M., Cakmakyapan, S., Hamedani, G. G., Ortega, E. M., Cancho, V. G., The odd log-logistic Lindley Poisson model for lifetime data, Communications in Statistics-Simulation and Computation, 46 (2017), 6513-6537. https://doi.org/10.1080/03610918.2016.1206931
  • Ranjbar, V., Alizadeh, M., Altun, E., Extended Generalized Lindley distribution: properties and applications, Journal of Mathematical Extension, 13 (2019), 117-142.
  • Tahir, M. H., Cordeiro, G. M., Mansoor, M. and Zubair, M., The Weibull-Lomax distribution: properties and applications, Hacettepe Journal of Mathematics and Statistics, 44 (2015), 455-474. https://doi.org/10.15672/HJMS.2014147465
  • Tarvirdizade, B., Nematollahi, N., A new flexible hazard rate distribution: application and estimation of its parameters, Communications in Statistics: Simulation and Computation, 48 (2019), 882-899. https://doi.org/10.1080/03610918.2017.1402039
  • Xie, M., Lai, C. D., Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function, Reliability Engineering and System Safety, 52 (1995), 87-93. https://doi.org/10.1016/0951-8320(95)00149-2

The Lomax-Lindley distribution: properties and applications to lifetime data

Year 2021, Volume: 70 Issue: 2, 965 - 983, 31.12.2021
https://doi.org/10.31801/cfsuasmas.772812

Abstract

This paper introduces a new three-parameter distribution which is obtained by combining the Lomax and Lindley distributions in a serial system and is called the Lomax-Lindley distribution. The new distribution is quite flexible to model lifetime data. This distribution provides a simple form for hazard rate function which can be increasing, decreasing, bathtub-shaped and unimodal for different choices of the parameter values. Some statistical properties of the Lomax-Lindley distribution such as quantiles, moments, order statistics, Renyi entropy and mean deviations are discussed. The maximum likelihood estimators of its unknown parameters are obtained and the approximate confidence intervals of the parameters are provided. A Monte Carlo simulation study is conducted to investigate the performance of the maximum likelihood estimators and their corresponding confidence intervals. Finally, two real data sets having bathtub-shaped and unimodal hazard rate functions are analyzed and it is shown that the proposed distribution can provide a better fit than other distributions for both lifetime data.

References

  • Aboraya, M., A new extension of the Lomax distribution with properties and applications to failure times data, Pakistan Journal of Statistics and Operation Research, 15 (2019), 461-479. https://doi.org/10.18187/pjsor.v15i2.2657
  • Alizadeh, M., Bagheri, S. F., Bahrami Samani, E., Ghobadi, S., Nadarajah, S., Exponentiated power Lindley power series class of distributions: Theory and applications, Communications in Statistics: Simulation and Computation, 47 (2018), 2499-2531. https://doi.org/10.1080/03610918.2017.1350270
  • Alizadeh, M., Ozel, G., Altun, E., Abdi, M., Hamedani, G. G., The odd log-logistic Marshall-Olkin Lindley model for lifetime data, Journal of Statistical Theory and Applications, 16 (2017), 382-400. https://doi.org/10.2991/jsta.2017.16.3.10
  • Almalki, S. J., Yuan, J., A new modified Weibull distribution, Reliability Engineering and System Safety, 111 (2013), 164-170. https://doi.org/10.1016/j.ress.2012.10.018
  • Arnold, B. C., Pareto Distributions, International Cooperative Publishing House, Fairland, Maryland, 1983.
  • Balakrishnan, A. N., Nagaraja, H. N., A First Course in Order Statistics, Wiley-Interscience, New York, 1992. https://doi.org/10.1137/1.9780898719062
  • Cakmakyapan S., Ozel, G., The Lindley family of distributions: properties and applications, Hacettepe Journal of Mathematics and Statistics, 46 (2017), 1113-1137. https://doi.org/10.15672/HJMS.201611615850
  • Cordeiro, G. M., Afify, A. Z., Yousof, H. M., Cakmakyapan, S., Ozel, G., The Lindley Weibull distribution: properties and applications, Anais da Academia Brasileira de Ciencias, 90 (2018), 2579-2598. https://doi.org/10.1590/0001-3765201820170635
  • Efron, B., Logistic regression, survival analysis, and the Kaplan-Meier curve, Journal of the American Statistical Association, 83 (1988), 414-425. https://doi.org/10.1080/01621459.1988.10478612
  • El-Bassiouny, A. H., Abdo, N. F., Shahen, H. S., Exponential Lomax distribution, International Journal of Computer Applications, 121 (2015), 24-29.
  • Ghitany, M. E., Atieh, B., Nadarajah, S., Lindley distribution and its application, Mathematics and Computers in Simulation, 78 (2008), 493-506. https://doi.org/10.1016/j.matcom.2007.06.007
  • Gupta, P. K., Singh, B., Parameter estimation of Lindley distribution with hybrid censored data, International Journal of System Assurance Engineering and Management, 4 (2013), 378-385. https://doi.org/10.1007/s13198-012-0120-y
  • Kumar, U., Klefsjo, B., Granholm, S., Reliability investigation for a fleet of load haul dump machines in a Swedish mine, Reliability Engineering and System Safety, 26 (1989), 341-361. https://doi.org/10.1016/0951-8320(89)90004-5
  • Lemonte, A. J., Cordeiro, G. M., An extended Lomax distribution, Statistics, 47 (2013), 800-816. https://doi.org/10.1080/02331888.2011.568119
  • Lindley, D. V., Fiducial distributions and Bayes theorem, Journal of the Royal Statistical Society, 20 (1958), 102-107. https://doi.org/10.1111/j.2517-6161.1958.tb00278.x
  • Lomax, K. S., Business failures: another example of the analysis of failure data, Journal of the American Statistical Association, 49 (1954), 847-852. https://doi.org10.1080/01621459.1954.10501239
  • Maiti, S. S., Mukherjee, I., On estimation of the PDF and CDF of the Lindley distribution, Communications in Statistics: Simulation and Computation, 47 (2018), 1370-1381. https://doi.org/10.1080/03610918.2017.1311919
  • Maurya, R. K., Tripathi, Y. M., Lodhi, C., Rastogi, M. K., On a generalized Lomax distribution, International Journal of System Assurance Engineering and Management, 10 (2019), 1091-1104. https://doi.org/10.1007/s13198-019-00839-0
  • Maya, R., Irshad, M. R., New extended generalized Lindley distribution: properties and applications, Statistica, 77 (2017), 33-52. https://doi.org/10.6092/issn.1973-2201/6808
  • Mudholkar, G. S., Srivastava, D. K., Kollia, G. D., A generalization of the Weibull distribution with application to the analysis of survival data, Journal of the American Statistical Association, 91 (1996), 1575-1583. https://doi.org/10.1080/01621459.1996.10476725
  • Ozel, G., Alizadeh, M., Cakmakyapan, S., Hamedani, G. G., Ortega, E. M., Cancho, V. G., The odd log-logistic Lindley Poisson model for lifetime data, Communications in Statistics-Simulation and Computation, 46 (2017), 6513-6537. https://doi.org/10.1080/03610918.2016.1206931
  • Ranjbar, V., Alizadeh, M., Altun, E., Extended Generalized Lindley distribution: properties and applications, Journal of Mathematical Extension, 13 (2019), 117-142.
  • Tahir, M. H., Cordeiro, G. M., Mansoor, M. and Zubair, M., The Weibull-Lomax distribution: properties and applications, Hacettepe Journal of Mathematics and Statistics, 44 (2015), 455-474. https://doi.org/10.15672/HJMS.2014147465
  • Tarvirdizade, B., Nematollahi, N., A new flexible hazard rate distribution: application and estimation of its parameters, Communications in Statistics: Simulation and Computation, 48 (2019), 882-899. https://doi.org/10.1080/03610918.2017.1402039
  • Xie, M., Lai, C. D., Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function, Reliability Engineering and System Safety, 52 (1995), 87-93. https://doi.org/10.1016/0951-8320(95)00149-2
There are 25 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Bahman Tarvirdizade 0000-0002-1517-7365

Publication Date December 31, 2021
Submission Date July 24, 2020
Acceptance Date May 21, 2021
Published in Issue Year 2021 Volume: 70 Issue: 2

Cite

APA Tarvirdizade, B. (2021). The Lomax-Lindley distribution: properties and applications to lifetime data. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 965-983. https://doi.org/10.31801/cfsuasmas.772812
AMA Tarvirdizade B. The Lomax-Lindley distribution: properties and applications to lifetime data. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):965-983. doi:10.31801/cfsuasmas.772812
Chicago Tarvirdizade, Bahman. “The Lomax-Lindley Distribution: Properties and Applications to Lifetime Data”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 965-83. https://doi.org/10.31801/cfsuasmas.772812.
EndNote Tarvirdizade B (December 1, 2021) The Lomax-Lindley distribution: properties and applications to lifetime data. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 965–983.
IEEE B. Tarvirdizade, “The Lomax-Lindley distribution: properties and applications to lifetime data”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 965–983, 2021, doi: 10.31801/cfsuasmas.772812.
ISNAD Tarvirdizade, Bahman. “The Lomax-Lindley Distribution: Properties and Applications to Lifetime Data”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 965-983. https://doi.org/10.31801/cfsuasmas.772812.
JAMA Tarvirdizade B. The Lomax-Lindley distribution: properties and applications to lifetime data. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:965–983.
MLA Tarvirdizade, Bahman. “The Lomax-Lindley Distribution: Properties and Applications to Lifetime Data”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 965-83, doi:10.31801/cfsuasmas.772812.
Vancouver Tarvirdizade B. The Lomax-Lindley distribution: properties and applications to lifetime data. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):965-83.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.