$ S $-$ \delta $-connectedness in $ S $-proximity spaces
Year 2021,
Volume: 70 Issue: 2, 600 - 611, 31.12.2021
Beenu Singh
,
Davinder Singh
Abstract
New types of connectedness in $ S $-proximity spaces, named as an $ S $-$\delta$-connectedness, local $ S $-$ \delta $-connectedness are introduced. Also, their inter-relationships are studied. In an $ S $-proximity space $ (X, \delta_{X}) $, the $ S $-$ \delta $-connectedness of a subset $ U $ of $ X $ with respect to $ \delta_{X} $ may not be same as the $ S $-$ \delta $-connectedness of $ U $ with respect to its subspace proximity $ \delta_{U} $. Further, $ S $-$ \delta $-component and $ S $-$ \delta $-treelike spaces are also defined and a number of results are given.
Supporting Institution
University Grants Commission, India
References
- Brouwer A.E., Treelike Spaces and Related Connected Topological Spaces, Mathematical Centre Tracts, Mathematisch centrum, 75, 1977.
- Cech E., Topological spaces, Wiley London (1966) fr seminar, Brno, 1936-1939, rev. ed. Z. Frolik, M. Katetov.
- Dimitrijevi´c R., Kocinac Lj., On connectedness of proximity spaces, Mat. Vesnik, 39(1) (1987), 27-35.
- Dimitrijevi´c R., Kocinac Lj., On treelike proximity spaces, Mat. Vesnik, 39(3) (1987), 257-261.
- Efremovic V.A., Infinitesimal spaces, Dokl. Akad. Nauk SSSR, 76 (1951), 341-343 (in Russian).
- Efremovic V.A., The geometry of proximity I, Mat. Sb., 31 (1952), 189-200 (in Russian).
- Krishna Murti S.B., A set of axioms for topological algebra, J. Indian Math. Soc., 4 (1940), 116-119.
- Modak S., Noiri T., A weaker form of connectedness, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 65 (2016), 49-52.
- Mrówka S. G. , W. J. Pervin, On uniform connectedness, Proc. Amer. Math. Soc., 15 (1964), 446-449.
- Naimpally S. , Proximity Approach to Problems in Topology and Analysis, Oldenbourg Verlag, München, 2009.
- Naimpally S., Peters J., Topology with Applications; Topological Spaces Via Near and Far, World Scientific Publishing Co. Pte. Ltd., 2013.
- Naimpally S., Warrack B.D., Proximity Spaces, Cambridge Univ. Press, 1970.
- Reisz F., Stetigkeitsbegriff and abstrakte Mengelehre, Atti IV Congr. Intern. dei Mat. Roma, 2 (1908), 18-24.
- Smirnov Y.M., On Completeness of Proximity Spaces I, Amer. Math. Soc. Trans., 38 (1964), 37-73.
- Smirnov Y.M., On Proximity Spaces, Amer. Math. Soc. Trans., 38 (1964), 5-35.
- Szymanski P., La notion des ensembles séparés comme terme primitif de la topologie, Math. Timisoara, 17 (1941), 65-84.
- Wallace A.D., Separation spaces, Ann. Math., 42(3) (1941), 687-697.
- Wallace A.D., Separation spaces II, Anais. Acad. Brasil Ciencias, 14 (1942), 203-206.
Year 2021,
Volume: 70 Issue: 2, 600 - 611, 31.12.2021
Beenu Singh
,
Davinder Singh
References
- Brouwer A.E., Treelike Spaces and Related Connected Topological Spaces, Mathematical Centre Tracts, Mathematisch centrum, 75, 1977.
- Cech E., Topological spaces, Wiley London (1966) fr seminar, Brno, 1936-1939, rev. ed. Z. Frolik, M. Katetov.
- Dimitrijevi´c R., Kocinac Lj., On connectedness of proximity spaces, Mat. Vesnik, 39(1) (1987), 27-35.
- Dimitrijevi´c R., Kocinac Lj., On treelike proximity spaces, Mat. Vesnik, 39(3) (1987), 257-261.
- Efremovic V.A., Infinitesimal spaces, Dokl. Akad. Nauk SSSR, 76 (1951), 341-343 (in Russian).
- Efremovic V.A., The geometry of proximity I, Mat. Sb., 31 (1952), 189-200 (in Russian).
- Krishna Murti S.B., A set of axioms for topological algebra, J. Indian Math. Soc., 4 (1940), 116-119.
- Modak S., Noiri T., A weaker form of connectedness, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 65 (2016), 49-52.
- Mrówka S. G. , W. J. Pervin, On uniform connectedness, Proc. Amer. Math. Soc., 15 (1964), 446-449.
- Naimpally S. , Proximity Approach to Problems in Topology and Analysis, Oldenbourg Verlag, München, 2009.
- Naimpally S., Peters J., Topology with Applications; Topological Spaces Via Near and Far, World Scientific Publishing Co. Pte. Ltd., 2013.
- Naimpally S., Warrack B.D., Proximity Spaces, Cambridge Univ. Press, 1970.
- Reisz F., Stetigkeitsbegriff and abstrakte Mengelehre, Atti IV Congr. Intern. dei Mat. Roma, 2 (1908), 18-24.
- Smirnov Y.M., On Completeness of Proximity Spaces I, Amer. Math. Soc. Trans., 38 (1964), 37-73.
- Smirnov Y.M., On Proximity Spaces, Amer. Math. Soc. Trans., 38 (1964), 5-35.
- Szymanski P., La notion des ensembles séparés comme terme primitif de la topologie, Math. Timisoara, 17 (1941), 65-84.
- Wallace A.D., Separation spaces, Ann. Math., 42(3) (1941), 687-697.
- Wallace A.D., Separation spaces II, Anais. Acad. Brasil Ciencias, 14 (1942), 203-206.