Research Article
BibTex RIS Cite
Year 2021, Volume: 70 Issue: 2, 1113 - 1130, 31.12.2021
https://doi.org/10.31801/cfsuasmas.798863

Abstract

References

  • Cerone, P., Dragomir, S. S., Trapezoidal-Type Rules From an Inequalities Point of View, Handbook of Analytic-Computational Methods in Applied Mathematics, G. Anastassiou (Ed.), CRC Press, NY, 2000, 65-134.
  • Cerone, P., Dragomir, S. S., Pearce, C. E. M., A generalised trapezoid inequality for functions of bounded variation, Turkish J. Math., 24(2) (2000), 147-163.
  • Dragomir, S. S., An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Ineq. Pure & Appl. Math., 3(2) (2002), Art. 31. https://www.emis.de/journals/JIPAM/article183.html?sid=183
  • Dragomir, S. S., An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Ineq. Pure & Appl. Math., 3(3) (2002), Art. 35. https://www.emis.de/journals/JIPAM/article187.html?sid=187
  • Dragomir, S. S., The Ostrowski integral inequality for mappings of bounded variation, Bull. Austral. Math. Soc., 60 (1999), 495–508.
  • Dragomir, S. S., Rassias, Th. M. (Eds.), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrecht, 2002.
  • Kechriniotis, A. I., Assimakis, N. D., Generalizations of the trapezoid inequalities based on a new mean value theorem for the remainder in Taylor’s formula, J. Inequal. Pure Appl. Math., 7(3) (2006), Article 90, 13 pp.
  • Liu, Z., Some inequalities of perturbed trapezoid type, J. Inequal. Pure Appl. Math., 7(2) (2006), Article 47, 9 pp.
  • Mercer, McD. A., On perturbed trapezoid inequalities, J. Inequal. Pure Appl. Math., 7(4) (2006), Article 118, 7 pp. (electronic).
  • Ostrowski, A., Uber die absolutabweichung einer differentiierbaren funktion von ihrem integralmittelwert, Comment. Math. Helv., 10 (1938), 226–227.
  • Ujevic, N., Error inequalities for a generalized trapezoid rule, Appl. Math. Lett. 19(1) (2006), 32–37.

An extension of trapezoid inequality to the complex integral

Year 2021, Volume: 70 Issue: 2, 1113 - 1130, 31.12.2021
https://doi.org/10.31801/cfsuasmas.798863

Abstract

In this paper we extend the trapezoid inequality to the complex integral by providing upper bounds for the quantity |(vu)f(u)+(wv)f(w)γf(z)dz||(v−u)f(u)+(w−v)f(w)−∫γf(z)dz|  under the assumptions that $γ$ is a smooth path parametrized by z(t),t[a,b],u=z(a),v=z(x)z(t),t∈[a,b],u=z(a),v=z(x) with x(a,b)x∈(a,b) and w=z(b)w=z(b) while ff is holomorphic in GG, an open domain and γGγ∈G. An application for circular paths is also given. 

References

  • Cerone, P., Dragomir, S. S., Trapezoidal-Type Rules From an Inequalities Point of View, Handbook of Analytic-Computational Methods in Applied Mathematics, G. Anastassiou (Ed.), CRC Press, NY, 2000, 65-134.
  • Cerone, P., Dragomir, S. S., Pearce, C. E. M., A generalised trapezoid inequality for functions of bounded variation, Turkish J. Math., 24(2) (2000), 147-163.
  • Dragomir, S. S., An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Ineq. Pure & Appl. Math., 3(2) (2002), Art. 31. https://www.emis.de/journals/JIPAM/article183.html?sid=183
  • Dragomir, S. S., An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Ineq. Pure & Appl. Math., 3(3) (2002), Art. 35. https://www.emis.de/journals/JIPAM/article187.html?sid=187
  • Dragomir, S. S., The Ostrowski integral inequality for mappings of bounded variation, Bull. Austral. Math. Soc., 60 (1999), 495–508.
  • Dragomir, S. S., Rassias, Th. M. (Eds.), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrecht, 2002.
  • Kechriniotis, A. I., Assimakis, N. D., Generalizations of the trapezoid inequalities based on a new mean value theorem for the remainder in Taylor’s formula, J. Inequal. Pure Appl. Math., 7(3) (2006), Article 90, 13 pp.
  • Liu, Z., Some inequalities of perturbed trapezoid type, J. Inequal. Pure Appl. Math., 7(2) (2006), Article 47, 9 pp.
  • Mercer, McD. A., On perturbed trapezoid inequalities, J. Inequal. Pure Appl. Math., 7(4) (2006), Article 118, 7 pp. (electronic).
  • Ostrowski, A., Uber die absolutabweichung einer differentiierbaren funktion von ihrem integralmittelwert, Comment. Math. Helv., 10 (1938), 226–227.
  • Ujevic, N., Error inequalities for a generalized trapezoid rule, Appl. Math. Lett. 19(1) (2006), 32–37.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Sever Dragomır 0000-0003-2902-6805

Publication Date December 31, 2021
Submission Date September 23, 2020
Acceptance Date April 17, 2021
Published in Issue Year 2021 Volume: 70 Issue: 2

Cite

APA Dragomır, S. (2021). An extension of trapezoid inequality to the complex integral. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 1113-1130. https://doi.org/10.31801/cfsuasmas.798863
AMA Dragomır S. An extension of trapezoid inequality to the complex integral. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):1113-1130. doi:10.31801/cfsuasmas.798863
Chicago Dragomır, Sever. “An Extension of Trapezoid Inequality to the Complex Integral”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 1113-30. https://doi.org/10.31801/cfsuasmas.798863.
EndNote Dragomır S (December 1, 2021) An extension of trapezoid inequality to the complex integral. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 1113–1130.
IEEE S. Dragomır, “An extension of trapezoid inequality to the complex integral”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 1113–1130, 2021, doi: 10.31801/cfsuasmas.798863.
ISNAD Dragomır, Sever. “An Extension of Trapezoid Inequality to the Complex Integral”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 1113-1130. https://doi.org/10.31801/cfsuasmas.798863.
JAMA Dragomır S. An extension of trapezoid inequality to the complex integral. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:1113–1130.
MLA Dragomır, Sever. “An Extension of Trapezoid Inequality to the Complex Integral”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 1113-30, doi:10.31801/cfsuasmas.798863.
Vancouver Dragomır S. An extension of trapezoid inequality to the complex integral. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):1113-30.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.