Research Article
BibTex RIS Cite
Year 2021, Volume: 70 Issue: 2, 702 - 718, 31.12.2021
https://doi.org/10.31801/cfsuasmas.866753

Abstract

References

  • Aldwoah, K. A., Malinowska, A. B., Torres, D. F. M., The power quantum calculus and variational problems, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms, 19 (2012), 93-116.
  • Allahverdiev, B. P., Tuna, H., A representation of the resolvent operator of singular Hahn-Sturm-Liouville problem, Numer. Funct. Anal. Optimiz., 41(4) (2020), 413-431. doi:10.1080/01630563.2019.1658604
  • Allahverdiev, B. P., Tuna, H., An expansion theorem for q-Sturm-Liouville operators on the whole line, Turk. J. Math., 42 (2018), 1060-1071. doi:10.3906/mat-1705-22
  • Allahverdiev, B. P., Tuna, H., Eigenfunction expansion in the singular case for q-Sturm-Liouville operators, Caspian J. Math. Sci., 8(2) (2019), 91-102. doi:10.22080/CJMS.2018.13943.1339
  • Allahverdiev, B. P., Tuna, H., Some properties of the resolvent of Sturm-Liouville operators on unbounded time scales, Mathematica, 61 (84) No. 1 (2019), 3-21. doi:10.24193/mathcluj.2019.1.01
  • Allahverdiev, B. P., Tuna, H., Spectral theory of singular Hahn difference equation of the Sturm-Liouville type, Commun. Math., 28(1) (2020), 13-25. doi:10.2478/cm-2020-0002
  • Allahverdiev, B. P., Tuna, H., On the resolvent of singular Sturm-Liouville operators with transmission conditions, Math. Meth. Appl. Sci., 43 (2020), 4286-4302. doi:10.1002/mma.6193
  • Annaby, M. H., Mansour, Z. S., q-Fractional calculus and equations. Lecture Notes in Mathematics, vol. 2056, Springer, Berlin, 2012. doi:10.1007/978-3-642-30898-7
  • Annaby, M. H., Mansour, Z. S., Soliman, I. A., q-Titchmarsh-Weyl theory: series expansion, Nagoya Math. J., 205 (2012), 67-118. doi:10.1215/00277630-1543787
  • Annaby, M. H., Mansour, Z. S., Basic Sturm-Liouville problems, J. Phys. A, Math. Gen., 38(17) (2005), 3775-3797. doi:10.1088/0305-4470/38/17/005
  • Annaby, M. H., Hamza, A. E., Aldwoah, K. A., Hahn di¤erence operator and associated Jackson-Nörlund integrals, J. Optim. Theory Appl., 154 (2012), 133-153. doi:10.1007/s10957-012-9987-7
  • Ernst, T., The History of q-Calculus and a New Method, U. U. D. M. Report (2000): 16, ISSN 1101-3591, Department of Mathematics, Uppsala University, 2000.
  • Hahn, W., Beitraäge zur Theorie der Heineschen Reihen, Math. Nachr. 2 (1949), 340-379 (in German). doi:10.1002/mana.19490020604
  • Hamza, A. E., Ahmed, S. M., Existence and uniqueness of solutions of Hahn difference equations, Adv. Differ. Equ., 316 (2013), 1-15. doi:10.1186/1687-1847-2013-316
  • Hamza, A. E., Ahmed, S. M., Theory of linear Hahn difference equations, J. Adv. Math., 4(2) (2013), 441-461.
  • Jackson, F. H., On q-de…nite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
  • Kac, V., Cheung, P., Quantum Calculus, Springer-Verlag, Berlin Heidelberg, 2002. doi:10.1007/978-1-4613-0071-7
  • Karahan, D., Mamedov, Kh. R., Sampling theory associated with q-Sturm-Liouville operator with discontinuity conditions, Journal of Contemporary Applied Mathematics, 10(2) ( 2020), 1-9.
  • Kolmogorov, A. N., Fomin, S. V., Introductory Real Analysis, Translated by R. A. Silverman, Dover Publications, New York, 1970.
  • Levitan, B. M., Sargsjan, I. S., Sturm-Liouville and Dirac Operators. Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991 (translated from the Russian). doi:10.1007/978-94-011-3748-5
  • Malinowska, A. B., Torres, D. F. M., The Hahn quantum variational calculus, J. Optim. Theory Appl., 147 (2010), 419-442. doi:10.1007/s10957-010-9730-1
  • Naimark, M. A., Linear Di¤erential Operators, 2nd edn.,1969, Nauka, Moscow; English transl. of 1st. edn., 1, 2, New York, 1968.
  • Swamy, P. N., Deformed Heisenberg algebra:origin of q-calculus, Physica A: Statistical Mechanics and its Applications, 328, 1-2 (2003), 145-153. doi:10.1016/S0378-4371(03)00518-1
  • Tariboon, J., Ntouyas, S. K., Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 282 (2013), 1-19. doi:10.1186/1687-1847-2013-282
  • Titchmarsh, E. C., Eigenfunction Expansions Associated with Second-Order Differential Equations, Part I. Second Edition, Clarendon Press, Oxford, 1962.

On the resolvent of singular q-Sturm-Liouville operators

Year 2021, Volume: 70 Issue: 2, 702 - 718, 31.12.2021
https://doi.org/10.31801/cfsuasmas.866753

Abstract

In this paper, we investigate the resolvent operator of the singular q-Sturm-Liouville problem defined as
(1/q)Dq¹[Dqy(x)]+[r(x)-λ]y(x)=0−(1/q)Dq⁻¹Dqy(x)+r(x)y(x)=λy(x),

with the boundary condition y(0,λ)cosβ+Dq¹y(0,λ)sinβ=0y(0,λ)cosβ+Dq⁻¹y(0,λ)sinβ=0,

where λCλ∈C, $r$ is a real function defined on $[0,∞)$, continuous at zero and rLq,loc¹(0,)r∈Lq,loc¹(0,∞). We give an integral representation for the resolvent operator and investigate some properties of this operator. Furthermore, we obtain a formula for the Titchmarsh-Weyl function of the singular $q$-Sturm-Liouville problem.

References

  • Aldwoah, K. A., Malinowska, A. B., Torres, D. F. M., The power quantum calculus and variational problems, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms, 19 (2012), 93-116.
  • Allahverdiev, B. P., Tuna, H., A representation of the resolvent operator of singular Hahn-Sturm-Liouville problem, Numer. Funct. Anal. Optimiz., 41(4) (2020), 413-431. doi:10.1080/01630563.2019.1658604
  • Allahverdiev, B. P., Tuna, H., An expansion theorem for q-Sturm-Liouville operators on the whole line, Turk. J. Math., 42 (2018), 1060-1071. doi:10.3906/mat-1705-22
  • Allahverdiev, B. P., Tuna, H., Eigenfunction expansion in the singular case for q-Sturm-Liouville operators, Caspian J. Math. Sci., 8(2) (2019), 91-102. doi:10.22080/CJMS.2018.13943.1339
  • Allahverdiev, B. P., Tuna, H., Some properties of the resolvent of Sturm-Liouville operators on unbounded time scales, Mathematica, 61 (84) No. 1 (2019), 3-21. doi:10.24193/mathcluj.2019.1.01
  • Allahverdiev, B. P., Tuna, H., Spectral theory of singular Hahn difference equation of the Sturm-Liouville type, Commun. Math., 28(1) (2020), 13-25. doi:10.2478/cm-2020-0002
  • Allahverdiev, B. P., Tuna, H., On the resolvent of singular Sturm-Liouville operators with transmission conditions, Math. Meth. Appl. Sci., 43 (2020), 4286-4302. doi:10.1002/mma.6193
  • Annaby, M. H., Mansour, Z. S., q-Fractional calculus and equations. Lecture Notes in Mathematics, vol. 2056, Springer, Berlin, 2012. doi:10.1007/978-3-642-30898-7
  • Annaby, M. H., Mansour, Z. S., Soliman, I. A., q-Titchmarsh-Weyl theory: series expansion, Nagoya Math. J., 205 (2012), 67-118. doi:10.1215/00277630-1543787
  • Annaby, M. H., Mansour, Z. S., Basic Sturm-Liouville problems, J. Phys. A, Math. Gen., 38(17) (2005), 3775-3797. doi:10.1088/0305-4470/38/17/005
  • Annaby, M. H., Hamza, A. E., Aldwoah, K. A., Hahn di¤erence operator and associated Jackson-Nörlund integrals, J. Optim. Theory Appl., 154 (2012), 133-153. doi:10.1007/s10957-012-9987-7
  • Ernst, T., The History of q-Calculus and a New Method, U. U. D. M. Report (2000): 16, ISSN 1101-3591, Department of Mathematics, Uppsala University, 2000.
  • Hahn, W., Beitraäge zur Theorie der Heineschen Reihen, Math. Nachr. 2 (1949), 340-379 (in German). doi:10.1002/mana.19490020604
  • Hamza, A. E., Ahmed, S. M., Existence and uniqueness of solutions of Hahn difference equations, Adv. Differ. Equ., 316 (2013), 1-15. doi:10.1186/1687-1847-2013-316
  • Hamza, A. E., Ahmed, S. M., Theory of linear Hahn difference equations, J. Adv. Math., 4(2) (2013), 441-461.
  • Jackson, F. H., On q-de…nite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
  • Kac, V., Cheung, P., Quantum Calculus, Springer-Verlag, Berlin Heidelberg, 2002. doi:10.1007/978-1-4613-0071-7
  • Karahan, D., Mamedov, Kh. R., Sampling theory associated with q-Sturm-Liouville operator with discontinuity conditions, Journal of Contemporary Applied Mathematics, 10(2) ( 2020), 1-9.
  • Kolmogorov, A. N., Fomin, S. V., Introductory Real Analysis, Translated by R. A. Silverman, Dover Publications, New York, 1970.
  • Levitan, B. M., Sargsjan, I. S., Sturm-Liouville and Dirac Operators. Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991 (translated from the Russian). doi:10.1007/978-94-011-3748-5
  • Malinowska, A. B., Torres, D. F. M., The Hahn quantum variational calculus, J. Optim. Theory Appl., 147 (2010), 419-442. doi:10.1007/s10957-010-9730-1
  • Naimark, M. A., Linear Di¤erential Operators, 2nd edn.,1969, Nauka, Moscow; English transl. of 1st. edn., 1, 2, New York, 1968.
  • Swamy, P. N., Deformed Heisenberg algebra:origin of q-calculus, Physica A: Statistical Mechanics and its Applications, 328, 1-2 (2003), 145-153. doi:10.1016/S0378-4371(03)00518-1
  • Tariboon, J., Ntouyas, S. K., Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 282 (2013), 1-19. doi:10.1186/1687-1847-2013-282
  • Titchmarsh, E. C., Eigenfunction Expansions Associated with Second-Order Differential Equations, Part I. Second Edition, Clarendon Press, Oxford, 1962.
There are 25 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Bilender Paşaoğlu 0000-0002-9315-4652

Hüseyin Tuna 0000-0001-7240-8687

Publication Date December 31, 2021
Submission Date January 22, 2021
Acceptance Date April 3, 2021
Published in Issue Year 2021 Volume: 70 Issue: 2

Cite

APA Paşaoğlu, B., & Tuna, H. (2021). On the resolvent of singular q-Sturm-Liouville operators. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 702-718. https://doi.org/10.31801/cfsuasmas.866753
AMA Paşaoğlu B, Tuna H. On the resolvent of singular q-Sturm-Liouville operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):702-718. doi:10.31801/cfsuasmas.866753
Chicago Paşaoğlu, Bilender, and Hüseyin Tuna. “On the Resolvent of Singular Q-Sturm-Liouville Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 702-18. https://doi.org/10.31801/cfsuasmas.866753.
EndNote Paşaoğlu B, Tuna H (December 1, 2021) On the resolvent of singular q-Sturm-Liouville operators. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 702–718.
IEEE B. Paşaoğlu and H. Tuna, “On the resolvent of singular q-Sturm-Liouville operators”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 702–718, 2021, doi: 10.31801/cfsuasmas.866753.
ISNAD Paşaoğlu, Bilender - Tuna, Hüseyin. “On the Resolvent of Singular Q-Sturm-Liouville Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 702-718. https://doi.org/10.31801/cfsuasmas.866753.
JAMA Paşaoğlu B, Tuna H. On the resolvent of singular q-Sturm-Liouville operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:702–718.
MLA Paşaoğlu, Bilender and Hüseyin Tuna. “On the Resolvent of Singular Q-Sturm-Liouville Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 702-18, doi:10.31801/cfsuasmas.866753.
Vancouver Paşaoğlu B, Tuna H. On the resolvent of singular q-Sturm-Liouville operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):702-18.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.