The full transformation semigroup TnTn is defined to consist of all functions from Xn={1,…,n}Xn={1,…,n} to itself, under the operation of composition. In \cite{JMH1}, for any αα in TnTn, Howie defined and denoted collapse by c(α)=⋃t∈\im(α){tα−1:|tα−1|≥2}c(α)=⋃t∈\im(α){tα−1:|tα−1|≥2}. Let OnOn be the semigroup of all order-preserving transformations and CnCn be the semigroup of all order-preserving and decreasing transformations on Xn
Xn=under its natural order, respectively.
Let E(On)E(On) be the set of all idempotent elements of OnOn, E(Cn)E(Cn) and N(Cn)N(Cn) be the sets of all idempotent and nilpotent elements of CnCn, respectively. Let UU be one of {Cn,N(Cn),E(Cn),On,E(On)}{Cn,N(Cn),E(Cn),On,E(On)}. For α∈Uα∈U, we consider the set
\imc(α)={t∈\im(α):|tα−1|≥2}\imc(α)={t∈\im(α):|tα−1|≥2}. For positive integers 2≤k≤r≤n2≤k≤r≤n, we define
U(k)={α∈U:t∈\imc(α) and |tα−1|=k},U(k,r)={α∈U(k):∣∣⋃t∈\imc(α)tα−1|=r}.U(k)={α∈U:t∈\imc(α) and |tα−1|=k},U(k,r)={α∈U(k):|⋃t∈\imc(α)tα−1|=r}.
The main objective of this paper is to determine |U(k,r)||U(k,r)|, and so |U(k)||U(k)| for some values rr and kk.
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Research Articles |
Authors | |
Publication Date | September 30, 2022 |
Submission Date | November 5, 2021 |
Acceptance Date | March 29, 2022 |
Published in Issue | Year 2022 Volume: 71 Issue: 3 |
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.
This work is licensed under a Creative Commons Attribution 4.0 International License.