Research Article
BibTex RIS Cite

On $\mathcal{F}$-cosmall morphisms

Year 2022, Volume: 71 Issue: 4, 968 - 977, 30.12.2022
https://doi.org/10.31801/cfsuasmas.1061084

Abstract

In this paper, we first define the notion of $\mathcal{F}$-cosmall quotient for an additive exact substructure $\mathcal{F}$ of an exact structure $\mathcal{E}$ in an additive category $\mathcal{A}$. We show that every $\mathcal{F}$-cosmall quotient is right minimal in some cases. We also give the definition of $\mathcal{F}$-superfluous quotient and we relate it the approximation of modules. As an application, we investigate our results in a pure-exact substructure $\mathcal{F}$.

References

  • Auslander, M., Rieten, I., Smalø S.O., Represantation Theory of Artin Algebras Volume 36 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1995.
  • Bühler, T., Exact categories, Expo. Math., 28(1) (2010), 1–69.
  • Cortes-Izurdiaga, M., Guil Asensio, P.A., Keskin Tütüncü D., Srivastava, A.K., Endomorphism rings via minimal morphisms, Mediterr. J. Math., 18(152) (2021), 16 pages. https://doi.org/10.1007/s00009-021-01802-9
  • Cortes-Izurdiaga, M., Guil Asensio, P.A., Kaleboğaz, B., Srivastava, A.K., Ziegler partial morphisms in additive exact categories, Bull. Math. Sci., 10(3) 2050012 (2020), 37 pages. https://doi.org/10.1142/S1664360720500125
  • Fieldhouse, D. J., Pure theories, Math. Ann., 184 (1969), 1-18.
  • Kaleboğaz, B., F-copartial morphisms, Accepted in Bull. Malaysian Math. Sci. Soc.
  • Keller, B., Chain complexes and stable categories, Manuscripta Math., 67(4) (1990), 379–417.
  • Keskin Tütüncü, D., Subrings of endomorphism rings associated with right minimal morphisms, submitted.
  • Monari Martinez, E., On Pure-Injective Modules, Abelian Groups and Modules, Proceedings of the Udine Conference CISM Courses and Lectures No. 287, Springer-Verlag, Vienna-New York (1984), 383-393. https://doi.org/10.1007/978-3-7091-2814-5 29
  • Warfield, R. B., Purity and algebraic compactness for modules, Pacific J. Math., 28 (1969), 699–719.
  • Zhu, H.Y., Ding N. Q., S-superfluous and S-essential homomorphisms, Acta Math. Sci., 29B(2) (2009), 391-401. https://doi.org/10.1016/S0252-9602(09)60038-2
  • Ziegler, M., Model theory of modules, Annals Pure Appl. Logic, 26 (1984), 149-213.
Year 2022, Volume: 71 Issue: 4, 968 - 977, 30.12.2022
https://doi.org/10.31801/cfsuasmas.1061084

Abstract

References

  • Auslander, M., Rieten, I., Smalø S.O., Represantation Theory of Artin Algebras Volume 36 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1995.
  • Bühler, T., Exact categories, Expo. Math., 28(1) (2010), 1–69.
  • Cortes-Izurdiaga, M., Guil Asensio, P.A., Keskin Tütüncü D., Srivastava, A.K., Endomorphism rings via minimal morphisms, Mediterr. J. Math., 18(152) (2021), 16 pages. https://doi.org/10.1007/s00009-021-01802-9
  • Cortes-Izurdiaga, M., Guil Asensio, P.A., Kaleboğaz, B., Srivastava, A.K., Ziegler partial morphisms in additive exact categories, Bull. Math. Sci., 10(3) 2050012 (2020), 37 pages. https://doi.org/10.1142/S1664360720500125
  • Fieldhouse, D. J., Pure theories, Math. Ann., 184 (1969), 1-18.
  • Kaleboğaz, B., F-copartial morphisms, Accepted in Bull. Malaysian Math. Sci. Soc.
  • Keller, B., Chain complexes and stable categories, Manuscripta Math., 67(4) (1990), 379–417.
  • Keskin Tütüncü, D., Subrings of endomorphism rings associated with right minimal morphisms, submitted.
  • Monari Martinez, E., On Pure-Injective Modules, Abelian Groups and Modules, Proceedings of the Udine Conference CISM Courses and Lectures No. 287, Springer-Verlag, Vienna-New York (1984), 383-393. https://doi.org/10.1007/978-3-7091-2814-5 29
  • Warfield, R. B., Purity and algebraic compactness for modules, Pacific J. Math., 28 (1969), 699–719.
  • Zhu, H.Y., Ding N. Q., S-superfluous and S-essential homomorphisms, Acta Math. Sci., 29B(2) (2009), 391-401. https://doi.org/10.1016/S0252-9602(09)60038-2
  • Ziegler, M., Model theory of modules, Annals Pure Appl. Logic, 26 (1984), 149-213.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Berke Kaleboğaz 0000-0002-4903-2244

Derya Keskin Tütüncü 0000-0002-3459-1924

Publication Date December 30, 2022
Submission Date January 21, 2022
Acceptance Date May 16, 2022
Published in Issue Year 2022 Volume: 71 Issue: 4

Cite

APA Kaleboğaz, B., & Keskin Tütüncü, D. (2022). On $\mathcal{F}$-cosmall morphisms. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(4), 968-977. https://doi.org/10.31801/cfsuasmas.1061084
AMA Kaleboğaz B, Keskin Tütüncü D. On $\mathcal{F}$-cosmall morphisms. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2022;71(4):968-977. doi:10.31801/cfsuasmas.1061084
Chicago Kaleboğaz, Berke, and Derya Keskin Tütüncü. “On $\mathcal{F}$-Cosmall Morphisms”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 4 (December 2022): 968-77. https://doi.org/10.31801/cfsuasmas.1061084.
EndNote Kaleboğaz B, Keskin Tütüncü D (December 1, 2022) On $\mathcal{F}$-cosmall morphisms. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 4 968–977.
IEEE B. Kaleboğaz and D. Keskin Tütüncü, “On $\mathcal{F}$-cosmall morphisms”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 4, pp. 968–977, 2022, doi: 10.31801/cfsuasmas.1061084.
ISNAD Kaleboğaz, Berke - Keskin Tütüncü, Derya. “On $\mathcal{F}$-Cosmall Morphisms”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/4 (December 2022), 968-977. https://doi.org/10.31801/cfsuasmas.1061084.
JAMA Kaleboğaz B, Keskin Tütüncü D. On $\mathcal{F}$-cosmall morphisms. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:968–977.
MLA Kaleboğaz, Berke and Derya Keskin Tütüncü. “On $\mathcal{F}$-Cosmall Morphisms”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 4, 2022, pp. 968-77, doi:10.31801/cfsuasmas.1061084.
Vancouver Kaleboğaz B, Keskin Tütüncü D. On $\mathcal{F}$-cosmall morphisms. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(4):968-77.

Cited By

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.