Research Article
BibTex RIS Cite
Year 2022, Volume: 71 Issue: 4, 944 - 953, 30.12.2022
https://doi.org/10.31801/cfsuasmas.1123739

Abstract

References

  • Amir, D., Chebyshev centers and uniform convexity, Pacific J. Math., 77(1) (1978), 1–6.
  • Castaing, C., Valadier, M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Vol. 580. Springer-Verlag, Berlin-New York, 1977.
  • Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
  • Fridy, J. A., On statistical convergence, Analysis, 5(4) (1985), 301–313. https://doi.org/10.1524/anly.1985.5.4.301
  • Fridy, J. A., Statistical limit points, Proc. Amer. Math. Soc., 118(4) (1993), 1187–1192. https://doi.org/10.1090/S0002-9939-1993-1181163-6
  • Hausdorff, F., Grundzüge der Mengenlehre, Chelsea Publishing Company, New York, 1949.
  • Kostyrko, P., Salat, T., Wilczynski, W., I-convergence, Real Anal. Exchange, 26(2) (2000/2001), 669–686.
  • Kuratowski, K., Topology. Vol. II, Academic Press, New York-London, 1968.
  • Mohiuddine, S. A., Hazarika, B., Alghamdi, M. A., Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems, Filomat, 33(14) (2019), 4549–4560. https://doi.org/10.2298/FIL1914549M
  • Mursaleen, M., Mohiuddine, S. A., On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62(1) (2012), 49–62. https://doi.org/10.2478/s12175-011-0071-9
  • Nuray, F., Rhoades, B. E., Statistical convergence of sequences of sets, Fasc. Math., 49 (2012), 87–99.
  • Papini, P. L., Wu, S., Nested sequences of sets, balls, Hausdorff convergence, Note Mat., 35(2) (2015), 99–114. https://doi.org/10.1285/i15900932v35n2p99
  • Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73–74.
  • Talo, Ö., Sever, Y., On Kuratowski I-convergence of sequences of closed sets, Filomat, 31(4) (2017), 899–912. https://doi.org/10.2298/FIL1704899T
  • Ward, J. D., Chebyshev centers in spaces of continuous functions, Pacific J. Math., 52 (1974), 283–287.

Ideal convergence of a sequence of Chebyshev radii of sets

Year 2022, Volume: 71 Issue: 4, 944 - 953, 30.12.2022
https://doi.org/10.31801/cfsuasmas.1123739

Abstract

In this paper, we investigate the diameters, Chebyshev radii, Chebyshev self-radii and inner radii of a sequence of sets in the normed spaces. We prove that if a sequence of sets is I -Hausdorff convergent to a set, the sequence of Chebyshev radii of that sequence is I-convergent. Similar relations are showed for the sequence of diameters, Chebyshev self-radii and inner radii of that sequence.

References

  • Amir, D., Chebyshev centers and uniform convexity, Pacific J. Math., 77(1) (1978), 1–6.
  • Castaing, C., Valadier, M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Vol. 580. Springer-Verlag, Berlin-New York, 1977.
  • Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
  • Fridy, J. A., On statistical convergence, Analysis, 5(4) (1985), 301–313. https://doi.org/10.1524/anly.1985.5.4.301
  • Fridy, J. A., Statistical limit points, Proc. Amer. Math. Soc., 118(4) (1993), 1187–1192. https://doi.org/10.1090/S0002-9939-1993-1181163-6
  • Hausdorff, F., Grundzüge der Mengenlehre, Chelsea Publishing Company, New York, 1949.
  • Kostyrko, P., Salat, T., Wilczynski, W., I-convergence, Real Anal. Exchange, 26(2) (2000/2001), 669–686.
  • Kuratowski, K., Topology. Vol. II, Academic Press, New York-London, 1968.
  • Mohiuddine, S. A., Hazarika, B., Alghamdi, M. A., Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems, Filomat, 33(14) (2019), 4549–4560. https://doi.org/10.2298/FIL1914549M
  • Mursaleen, M., Mohiuddine, S. A., On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62(1) (2012), 49–62. https://doi.org/10.2478/s12175-011-0071-9
  • Nuray, F., Rhoades, B. E., Statistical convergence of sequences of sets, Fasc. Math., 49 (2012), 87–99.
  • Papini, P. L., Wu, S., Nested sequences of sets, balls, Hausdorff convergence, Note Mat., 35(2) (2015), 99–114. https://doi.org/10.1285/i15900932v35n2p99
  • Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73–74.
  • Talo, Ö., Sever, Y., On Kuratowski I-convergence of sequences of closed sets, Filomat, 31(4) (2017), 899–912. https://doi.org/10.2298/FIL1704899T
  • Ward, J. D., Chebyshev centers in spaces of continuous functions, Pacific J. Math., 52 (1974), 283–287.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Hüseyin Albayrak 0000-0001-8275-089X

Publication Date December 30, 2022
Submission Date January 7, 2022
Acceptance Date June 8, 2022
Published in Issue Year 2022 Volume: 71 Issue: 4

Cite

APA Albayrak, H. (2022). Ideal convergence of a sequence of Chebyshev radii of sets. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(4), 944-953. https://doi.org/10.31801/cfsuasmas.1123739
AMA Albayrak H. Ideal convergence of a sequence of Chebyshev radii of sets. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2022;71(4):944-953. doi:10.31801/cfsuasmas.1123739
Chicago Albayrak, Hüseyin. “Ideal Convergence of a Sequence of Chebyshev Radii of Sets”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 4 (December 2022): 944-53. https://doi.org/10.31801/cfsuasmas.1123739.
EndNote Albayrak H (December 1, 2022) Ideal convergence of a sequence of Chebyshev radii of sets. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 4 944–953.
IEEE H. Albayrak, “Ideal convergence of a sequence of Chebyshev radii of sets”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 4, pp. 944–953, 2022, doi: 10.31801/cfsuasmas.1123739.
ISNAD Albayrak, Hüseyin. “Ideal Convergence of a Sequence of Chebyshev Radii of Sets”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/4 (December 2022), 944-953. https://doi.org/10.31801/cfsuasmas.1123739.
JAMA Albayrak H. Ideal convergence of a sequence of Chebyshev radii of sets. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:944–953.
MLA Albayrak, Hüseyin. “Ideal Convergence of a Sequence of Chebyshev Radii of Sets”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 4, 2022, pp. 944-53, doi:10.31801/cfsuasmas.1123739.
Vancouver Albayrak H. Ideal convergence of a sequence of Chebyshev radii of sets. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(4):944-53.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.