Research Article
BibTex RIS Cite
Year 2023, Volume: 72 Issue: 1, 118 - 128, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1029614

Abstract

References

  • Barcroft, J., Hill, A. V., The nature of oxyhemoglobin, with a note on its molecular weight, J. Physiol., 39 (1910). doi: 10.1113/jphysiol.1910.sp001350
  • Barcroft, J., The combinations of hemoglobin with oxygen and with carbon monoxide. II. Biochem J., 7(5) (1913), 481-491. doi: 10.1042/bj0070481
  • Eaton, W. A., Henry, E. R., Hofrichter, J., Mozzarelli, A., Is cooperative oxygen binding by Hemoglobin really understood, Arch. Physiol., 16 (1904). doi: 10.1038/7586
  • Brian, I., Mathematical Modeling in Systems Biology: An Introduction, 2012.
  • Cattoni, D. I., Chara, O., Kaufman, S. B., Flecha, F. L., Cooperativity in binding processes: new insights from phenomenological modeling, Plos One, 10(12) (2015) e0146043. doi: 1371/journal.pone.014604-3
  • Chien, HO. Y., Hemoglobin: Cooperativity in Protein - Ligand Interactions. In: Encyclopedia of Life Sciences (ELS), John Wiley Sons, Ltd: Chichester, 2010. doi: 10.1002/9780470015902.a0001345.pub2
  • David, L. N., Cox, M. M., Lehninger, Principles of Biochemistry, 4th edition, W.H. Freeman and Company New York, 2005.
  • Edsall, J. T., Blood and hemoglobin: The evolution of knowledge of functional adaptation in a biochemical system, part I: The adaptation of chemical structure to function in hemoglobin, J. Hist. Biol., 5 (1972). doi: 10.1007/BF00346659
  • Ferrell, J. E., Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs, Trends Biochem. Sci., 21 (1996). doi.org/10.1016/S0968-0004(96)20026-X
  • Ferrell, J. E., Self-perpetuating states in signal transduction: positive feedback, double -negative feedback and bistability, Curr. Opin. Cell Biol., 14 (2002). doi: 10.1016/s0955-0674(02)00314-9
  • Francisco, L. O., Herrera, A., A dynamical model for a cooperative enzyme, J. Theor. Biol., 154 (1992). doi: 10.1016/s0022-5193(05)80402-3
  • Garbett, N. C., Chaires, J. B., Binding: a polemic and rough guide, Methods Cell Biol., 84 (2008).
  • Gutfreund, H., Kinetics for the Life Sciences: Receptors, Transmitters and Catalystd, Cambridge: Cambridge University Press, 1995. doi.org/10.1017/CBO9780511626203
  • Hammes, G. G., Thermodynamics and Kinetics for the Biological Sciences, John Wiley and Sons, New York, 2000.
  • Bisswanger, H., Enzyme Kinetics, Principles and Methods, Wiley-Vch, 2002.
  • Hill, A. V., The possible effects of the aggregation of the molecules of hemoglobin on its dissociation curves, J. Physiol., 40 (1910).
  • Hill, A. V., The combinations of hemoglobin with oxygen and with carbon monoxide. I., Biochem. J. 7(5) (1913), 471. doi: 10.1042/bj0070471
  • Hill, T. L., Cooperativity Theory in Biochemistry: Steady-State and Equilibrium Systems, Springer Series in Molecular and Cell Biology, Springer, New York, 1985.
  • Holt, JO. M., Ackers, G. K., Kinetic trapping of a key hemoglobin intermediate, Methods in Molecular Biology, 796, Allostery: Methods and Protocols, Springer, 2012. doi: 10.1007/978-1-61779-334-9 2
  • Kaihnsa, N., Safey El Din, M., Maritine, J. W. R., Cooperativity, absolute interaction, and algebraic optimization, Journal of Mathematical Biology, 81 (2020), 1169-1191. doi: 10.1007/s00285-020-01540-8
  • Khanday, M. A., Introduction to Modeling and Biomathematics, Dilpreet Publishing House, 2016.
  • Khanday, M. A., Bhat, Roohi., Transformation of glucokinase under variable rate constants and thermal conditions: a mathematical model, Applications and Applied Mathematics: An International Journal, 16 (2021), 953-964.
  • Klotz, I. M., Ligand - Receptor Energetics, John Wiley and Sons, New York, 1997.
  • Mammen, M., Choi, S. K., Whitesides, G. M., Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors, Angew. Chem., 37 (1998). doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3
  • Marangoni, A. G., Enzyme Kinetics, A Modern Approach, Wiley John and Sons, Inc., Hoboken, New Jersey, 2003.
  • Johnson, M. L., Mathematical modeling of cooperative interactions in hemoglobin, Methods in Enzymology, 323 (2000). doi.org/10.1016/S0076-6879(00)23364-8
  • Mills, F. C., Biochemistry, 1976.
  • Monod, J., Wyman, J., Changeux, J. P., On the nature of allosteric transition: A plausible model, Journal of Molecular Biology, 12 (1965). doi.org/10.1016/S0022-2836(65)80285-6
  • Pertuz, M., Stereochemistry of cooperativity effects in hemoglobin, Nature, 228 (1970).
  • Klein, P., Pawson, T., Tyers, M., Mathematical modeling suggests cooperative interactions between a disordered polyvalent ligand and a single receptor site, Current Biology, 13 (2003). doi: 10.1016/j.cub. 2003.09.027
  • Stefan, M. I., Novera, N. L., Cooperative binding, Plos Comput. Biol., 9(6) (2013). doi.org/10.1371/journal.pcbi.1003106

A mathematical analysis of cooperativity and fractional saturation of oxygen in hemoglobin

Year 2023, Volume: 72 Issue: 1, 118 - 128, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1029614

Abstract

Hemoglobin $(Hb)$ possesses good properties of cooperative system and it normally executes oxygen and other essential items via erythrocytes in the body. The chemical action of $Hb$ is to combine with oxygen (O2)(O2) in the lungs to form oxyhemoglobin (HbO2)(HbO2). Binding of oxygen with a hemoglobin is one of the important cooperative mechanism and is an emerging mathematical research area with wide range of applications in biomedical engineering and medical physiology. To this end, a mathematical model is proposed to study the fractional saturation of oxygen in hemoglobin to understand the binding effect and its stability at various stages. The mathematical formulation is based on the system of ordinary differential equations together with rate equations under different association and dissociation rate constants. The five states of the cooperative systems $Hb, HbO_2, Hb(O_2)_2, Hb(O_2)_3$ and $Hb(O_2)_4$ are modelled and the Hill’s function has been used to approximate the binding effect and saturation of ligand $(O_2)$ with respect to various rate constants. Also, the Adair equation has been employed to interpret the saturation concentrations of oxygen in hemoglobin.

References

  • Barcroft, J., Hill, A. V., The nature of oxyhemoglobin, with a note on its molecular weight, J. Physiol., 39 (1910). doi: 10.1113/jphysiol.1910.sp001350
  • Barcroft, J., The combinations of hemoglobin with oxygen and with carbon monoxide. II. Biochem J., 7(5) (1913), 481-491. doi: 10.1042/bj0070481
  • Eaton, W. A., Henry, E. R., Hofrichter, J., Mozzarelli, A., Is cooperative oxygen binding by Hemoglobin really understood, Arch. Physiol., 16 (1904). doi: 10.1038/7586
  • Brian, I., Mathematical Modeling in Systems Biology: An Introduction, 2012.
  • Cattoni, D. I., Chara, O., Kaufman, S. B., Flecha, F. L., Cooperativity in binding processes: new insights from phenomenological modeling, Plos One, 10(12) (2015) e0146043. doi: 1371/journal.pone.014604-3
  • Chien, HO. Y., Hemoglobin: Cooperativity in Protein - Ligand Interactions. In: Encyclopedia of Life Sciences (ELS), John Wiley Sons, Ltd: Chichester, 2010. doi: 10.1002/9780470015902.a0001345.pub2
  • David, L. N., Cox, M. M., Lehninger, Principles of Biochemistry, 4th edition, W.H. Freeman and Company New York, 2005.
  • Edsall, J. T., Blood and hemoglobin: The evolution of knowledge of functional adaptation in a biochemical system, part I: The adaptation of chemical structure to function in hemoglobin, J. Hist. Biol., 5 (1972). doi: 10.1007/BF00346659
  • Ferrell, J. E., Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs, Trends Biochem. Sci., 21 (1996). doi.org/10.1016/S0968-0004(96)20026-X
  • Ferrell, J. E., Self-perpetuating states in signal transduction: positive feedback, double -negative feedback and bistability, Curr. Opin. Cell Biol., 14 (2002). doi: 10.1016/s0955-0674(02)00314-9
  • Francisco, L. O., Herrera, A., A dynamical model for a cooperative enzyme, J. Theor. Biol., 154 (1992). doi: 10.1016/s0022-5193(05)80402-3
  • Garbett, N. C., Chaires, J. B., Binding: a polemic and rough guide, Methods Cell Biol., 84 (2008).
  • Gutfreund, H., Kinetics for the Life Sciences: Receptors, Transmitters and Catalystd, Cambridge: Cambridge University Press, 1995. doi.org/10.1017/CBO9780511626203
  • Hammes, G. G., Thermodynamics and Kinetics for the Biological Sciences, John Wiley and Sons, New York, 2000.
  • Bisswanger, H., Enzyme Kinetics, Principles and Methods, Wiley-Vch, 2002.
  • Hill, A. V., The possible effects of the aggregation of the molecules of hemoglobin on its dissociation curves, J. Physiol., 40 (1910).
  • Hill, A. V., The combinations of hemoglobin with oxygen and with carbon monoxide. I., Biochem. J. 7(5) (1913), 471. doi: 10.1042/bj0070471
  • Hill, T. L., Cooperativity Theory in Biochemistry: Steady-State and Equilibrium Systems, Springer Series in Molecular and Cell Biology, Springer, New York, 1985.
  • Holt, JO. M., Ackers, G. K., Kinetic trapping of a key hemoglobin intermediate, Methods in Molecular Biology, 796, Allostery: Methods and Protocols, Springer, 2012. doi: 10.1007/978-1-61779-334-9 2
  • Kaihnsa, N., Safey El Din, M., Maritine, J. W. R., Cooperativity, absolute interaction, and algebraic optimization, Journal of Mathematical Biology, 81 (2020), 1169-1191. doi: 10.1007/s00285-020-01540-8
  • Khanday, M. A., Introduction to Modeling and Biomathematics, Dilpreet Publishing House, 2016.
  • Khanday, M. A., Bhat, Roohi., Transformation of glucokinase under variable rate constants and thermal conditions: a mathematical model, Applications and Applied Mathematics: An International Journal, 16 (2021), 953-964.
  • Klotz, I. M., Ligand - Receptor Energetics, John Wiley and Sons, New York, 1997.
  • Mammen, M., Choi, S. K., Whitesides, G. M., Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors, Angew. Chem., 37 (1998). doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3
  • Marangoni, A. G., Enzyme Kinetics, A Modern Approach, Wiley John and Sons, Inc., Hoboken, New Jersey, 2003.
  • Johnson, M. L., Mathematical modeling of cooperative interactions in hemoglobin, Methods in Enzymology, 323 (2000). doi.org/10.1016/S0076-6879(00)23364-8
  • Mills, F. C., Biochemistry, 1976.
  • Monod, J., Wyman, J., Changeux, J. P., On the nature of allosteric transition: A plausible model, Journal of Molecular Biology, 12 (1965). doi.org/10.1016/S0022-2836(65)80285-6
  • Pertuz, M., Stereochemistry of cooperativity effects in hemoglobin, Nature, 228 (1970).
  • Klein, P., Pawson, T., Tyers, M., Mathematical modeling suggests cooperative interactions between a disordered polyvalent ligand and a single receptor site, Current Biology, 13 (2003). doi: 10.1016/j.cub. 2003.09.027
  • Stefan, M. I., Novera, N. L., Cooperative binding, Plos Comput. Biol., 9(6) (2013). doi.org/10.1371/journal.pcbi.1003106
There are 31 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Roohi Bhat This is me 0000-0002-4020-7001

Mukhtar Ahmad Khanday 0000-0002-3090-1497

Publication Date March 30, 2023
Submission Date November 29, 2021
Acceptance Date July 19, 2022
Published in Issue Year 2023 Volume: 72 Issue: 1

Cite

APA Bhat, R., & Khanday, M. A. (2023). A mathematical analysis of cooperativity and fractional saturation of oxygen in hemoglobin. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(1), 118-128. https://doi.org/10.31801/cfsuasmas.1029614
AMA Bhat R, Khanday MA. A mathematical analysis of cooperativity and fractional saturation of oxygen in hemoglobin. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2023;72(1):118-128. doi:10.31801/cfsuasmas.1029614
Chicago Bhat, Roohi, and Mukhtar Ahmad Khanday. “A Mathematical Analysis of Cooperativity and Fractional Saturation of Oxygen in Hemoglobin”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 1 (March 2023): 118-28. https://doi.org/10.31801/cfsuasmas.1029614.
EndNote Bhat R, Khanday MA (March 1, 2023) A mathematical analysis of cooperativity and fractional saturation of oxygen in hemoglobin. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 1 118–128.
IEEE R. Bhat and M. A. Khanday, “A mathematical analysis of cooperativity and fractional saturation of oxygen in hemoglobin”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 1, pp. 118–128, 2023, doi: 10.31801/cfsuasmas.1029614.
ISNAD Bhat, Roohi - Khanday, Mukhtar Ahmad. “A Mathematical Analysis of Cooperativity and Fractional Saturation of Oxygen in Hemoglobin”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/1 (March 2023), 118-128. https://doi.org/10.31801/cfsuasmas.1029614.
JAMA Bhat R, Khanday MA. A mathematical analysis of cooperativity and fractional saturation of oxygen in hemoglobin. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:118–128.
MLA Bhat, Roohi and Mukhtar Ahmad Khanday. “A Mathematical Analysis of Cooperativity and Fractional Saturation of Oxygen in Hemoglobin”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 1, 2023, pp. 118-2, doi:10.31801/cfsuasmas.1029614.
Vancouver Bhat R, Khanday MA. A mathematical analysis of cooperativity and fractional saturation of oxygen in hemoglobin. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(1):118-2.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.