Research Article
BibTex RIS Cite

Free resolutions for the tangent cones of some homogeneous pseudo symmetric monomial curves

Year 2023, Volume: 72 Issue: 1, 129 - 136, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1117855

Abstract

In this article, we study minimal graded free resolutions of Cohen-Macaulay tangent cones of some monomial curves associated to 4-generated pseudo symmetric numerical semigroups. We explicitly give the matrices in these minimal free resolutions.

References

  • Barucci, V., Fröberg, R. and Şahin, M., On free resolutions of some semigroup rings, J. Pure Appl. Algebra, 218(6) (2014),1107-1116. https://doi.org/10.1016/j.jpaa.2013.11.007
  • Buchsbaum, D., Eisenbud, D., What makes a complex exact?, J. Algebra, 25 (1973), 259-268.
  • Eto, K., Almost Gorenstein monomial curves in affine four space, Journal of Algebra, 488 (2017), 362-387. https://doi.org/10.1016/j.jalgebra.2017.05.044
  • Greuel, G.-M., Pfister, G., and Schönemann, H., Singular 2.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2001). http://www.singular.uni-kl.de
  • Gimenez, P., Sengupta, I. and Srinivasan, H., Minimal free resolution for certain affine monomial curves, Commutative Algebra and its Connections to Geometry (PASI 2009), A. Corso and C. Polini Eds, Contemp. Math., 555 (Amer. Math. Soc., 2011) 87–95. https://doi.org/10.1081/AGB-120021893
  • Gimenez, P., Sengupta, I. and Srinivasan H., Minimal graded free resolution for monomial curves defined by arithmetic sequences, Journal of Algebra, 388 (2013) 294-310. https://doi.org/10.1016/j.jalgebra.2013.04.026
  • Greuel, G.-M., Pfister, G., A Singular Introduction to Commutative Algebra, Springer-Verlag, (2002).
  • Herzog, J., Rossi, M.E., Valla, G., On the depth of the symmetric algebra, Trans. Amer. Math. Soc., 296 (2) (1986), 577-606.
  • Jafari, R., Zarzuela Armengou, S., Homogeneous numerical semigroups, Semigroup Forum, 97 (2018), 278–306. https://doi.org/10.1007/s00233-018-9941-6
  • Komeda, J., On the existence of Weierstrass points with a certain semigroup, Tsukuba J. Math., 6(2) (1982), 237-270.
  • Mete, P., Zengin, E.E., Minimal free resolutions of the tangent cones of Gorenstein monomial curves, Turkish Journal of Mathematics, 43 (2019), 2782-2793. https://doi.org/ 10.3906/mat-1903-15
  • Mete, P., Zengin, E.E., On minimal free resolution of the associated graded rings of certain monomial curves: new proofs in A4., Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68(1) (2019), 1019–1029. https://doi.org/10.31801/cfsuasmas.501449
  • Sengupta, I., A minimal free resolution for certain monomial curves in A4, Comm. Algebra, 31(6) (2003), 2791–2809. https://doi.org/10.1081/AGB-120021893
  • Şahin, M., Şahin, N., On pseudo symmetric monomial curves, Communications in Algebra, 46(6) (2018), 2561-2573. https://doi.org/10.1080/00927872.2017.1392532
  • Şahin, M., Şahin, N., Betti numbers for certain Cohen-Macaulay tangent cones, Bull. Aust. Math. Soc., 99(1) (2019), 68–77. doi:10.1017/S0004972718000898
  • Stamate, D., Betti numbers for numerical semigroup rings, Multigraded Algebra and Applications-NSA 24,2016, Springer Proceedings in Mathematics and Statistics, 238 (eds.V. Ene and E. Miller) (2018)
Year 2023, Volume: 72 Issue: 1, 129 - 136, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1117855

Abstract

References

  • Barucci, V., Fröberg, R. and Şahin, M., On free resolutions of some semigroup rings, J. Pure Appl. Algebra, 218(6) (2014),1107-1116. https://doi.org/10.1016/j.jpaa.2013.11.007
  • Buchsbaum, D., Eisenbud, D., What makes a complex exact?, J. Algebra, 25 (1973), 259-268.
  • Eto, K., Almost Gorenstein monomial curves in affine four space, Journal of Algebra, 488 (2017), 362-387. https://doi.org/10.1016/j.jalgebra.2017.05.044
  • Greuel, G.-M., Pfister, G., and Schönemann, H., Singular 2.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2001). http://www.singular.uni-kl.de
  • Gimenez, P., Sengupta, I. and Srinivasan, H., Minimal free resolution for certain affine monomial curves, Commutative Algebra and its Connections to Geometry (PASI 2009), A. Corso and C. Polini Eds, Contemp. Math., 555 (Amer. Math. Soc., 2011) 87–95. https://doi.org/10.1081/AGB-120021893
  • Gimenez, P., Sengupta, I. and Srinivasan H., Minimal graded free resolution for monomial curves defined by arithmetic sequences, Journal of Algebra, 388 (2013) 294-310. https://doi.org/10.1016/j.jalgebra.2013.04.026
  • Greuel, G.-M., Pfister, G., A Singular Introduction to Commutative Algebra, Springer-Verlag, (2002).
  • Herzog, J., Rossi, M.E., Valla, G., On the depth of the symmetric algebra, Trans. Amer. Math. Soc., 296 (2) (1986), 577-606.
  • Jafari, R., Zarzuela Armengou, S., Homogeneous numerical semigroups, Semigroup Forum, 97 (2018), 278–306. https://doi.org/10.1007/s00233-018-9941-6
  • Komeda, J., On the existence of Weierstrass points with a certain semigroup, Tsukuba J. Math., 6(2) (1982), 237-270.
  • Mete, P., Zengin, E.E., Minimal free resolutions of the tangent cones of Gorenstein monomial curves, Turkish Journal of Mathematics, 43 (2019), 2782-2793. https://doi.org/ 10.3906/mat-1903-15
  • Mete, P., Zengin, E.E., On minimal free resolution of the associated graded rings of certain monomial curves: new proofs in A4., Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68(1) (2019), 1019–1029. https://doi.org/10.31801/cfsuasmas.501449
  • Sengupta, I., A minimal free resolution for certain monomial curves in A4, Comm. Algebra, 31(6) (2003), 2791–2809. https://doi.org/10.1081/AGB-120021893
  • Şahin, M., Şahin, N., On pseudo symmetric monomial curves, Communications in Algebra, 46(6) (2018), 2561-2573. https://doi.org/10.1080/00927872.2017.1392532
  • Şahin, M., Şahin, N., Betti numbers for certain Cohen-Macaulay tangent cones, Bull. Aust. Math. Soc., 99(1) (2019), 68–77. doi:10.1017/S0004972718000898
  • Stamate, D., Betti numbers for numerical semigroup rings, Multigraded Algebra and Applications-NSA 24,2016, Springer Proceedings in Mathematics and Statistics, 238 (eds.V. Ene and E. Miller) (2018)
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Nil Şahin 0000-0001-6367-6225

Publication Date March 30, 2023
Submission Date May 17, 2022
Acceptance Date August 7, 2022
Published in Issue Year 2023 Volume: 72 Issue: 1

Cite

APA Şahin, N. (2023). Free resolutions for the tangent cones of some homogeneous pseudo symmetric monomial curves. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(1), 129-136. https://doi.org/10.31801/cfsuasmas.1117855
AMA Şahin N. Free resolutions for the tangent cones of some homogeneous pseudo symmetric monomial curves. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2023;72(1):129-136. doi:10.31801/cfsuasmas.1117855
Chicago Şahin, Nil. “Free Resolutions for the Tangent Cones of Some Homogeneous Pseudo Symmetric Monomial Curves”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 1 (March 2023): 129-36. https://doi.org/10.31801/cfsuasmas.1117855.
EndNote Şahin N (March 1, 2023) Free resolutions for the tangent cones of some homogeneous pseudo symmetric monomial curves. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 1 129–136.
IEEE N. Şahin, “Free resolutions for the tangent cones of some homogeneous pseudo symmetric monomial curves”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 1, pp. 129–136, 2023, doi: 10.31801/cfsuasmas.1117855.
ISNAD Şahin, Nil. “Free Resolutions for the Tangent Cones of Some Homogeneous Pseudo Symmetric Monomial Curves”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/1 (March 2023), 129-136. https://doi.org/10.31801/cfsuasmas.1117855.
JAMA Şahin N. Free resolutions for the tangent cones of some homogeneous pseudo symmetric monomial curves. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:129–136.
MLA Şahin, Nil. “Free Resolutions for the Tangent Cones of Some Homogeneous Pseudo Symmetric Monomial Curves”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 1, 2023, pp. 129-36, doi:10.31801/cfsuasmas.1117855.
Vancouver Şahin N. Free resolutions for the tangent cones of some homogeneous pseudo symmetric monomial curves. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(1):129-36.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.