Research Article
BibTex RIS Cite
Year 2023, Volume: 72 Issue: 3, 815 - 825, 30.09.2023
https://doi.org/10.31801/cfsuasmas.1160135

Abstract

References

  • Abbassi, M. T. K., Sarih, M., On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math. (Brno), 41 (2005), 71-92.
  • Altunbaş, M, Gezer, A., Bilen, L., Remarks about the Kaluza-Klein metric on tangent bundle, Int. J. Geom. Met. Mod. Phys., 16(3) (2019), 1950040. https://doi.org/10.1142/S0219887819500403
  • Amari, S., Differential geometric methods in statistics- Lect. Notes in Stats., Springer, New York, 1985.
  • Anastasiei, M., Locally conformal Kaehler structures on tangent bundle of a space form, Libertas Math., 19 (1999), 71-76.
  • Balan, V., Peyghan, E., Sharahi, E., Statistical structures on the tangent bundle of a statistical manifold with Sasaki metric, Hacettepe J. Math. Stat., 49(1) (2020), 120-135. https://doi.org/10.15672/HJMS.2019.667
  • Dombrowski, P., On the geometry of the tangent bundle, J. Reine Angew. Math., 210 (1962), 73-88. https://doi.org/10.1515/crll.1962.210.73
  • Gezer, A., Altunbaş, M., Some notes concerning Riemannian metrics of Cheeger Gromoll type, J. Math. Anal. App., 396(1) (2012), 119-132. https://doi.org/10.1016/j.jmaa.2012.06.011
  • Gezer, A., Bilen, L., Karaman, C¸ ., Altunba¸s, M., Curvature properties of Riemannian metrics of the forms Sgf +Hg on the tangent bundle over a Riemannian manifold (M,g), Int. Elec. J. Geo., 8(2) (2015), 181-194. https://doi.org/10.36890/iejg.592306
  • Gezer, A., Ozkan, M., Notes on the tangent bundle with deformed complete lift metric, Turkish J. Math., 38 (2014), 1038-1049. https://doi.org/10.3906/mat-1402-30
  • Lauritzen, S., Statistical manifolds. In Differential geometry in statistical inference, IMS lecture notes monograph series (10), Institute of Mathematical Statistics, Hyward, CA, USA, 96-163, 1987.
  • Peyghan, E., Seifipour, D., Blaga, A., On the geometry of lift metrics and lift connections on the tangent bundle, Turkish J. Math., 46(6) (2022), 2335-2352. https://doi.org/10.55730/1300-0098.3272
  • Peyghan, E., Seifipour, D., Gezer, A., Statistical structures on tangent bundles and Lie groups. Hacettepe J. Math. Stat., 50 (2021), 1140-1154. https://doi.org/10.15672/hujms.645070
  • Salimov, A., Kazimova, S., Geodesics of the Cheeger-Gromoll metric, Turkish J. Math., 33(1) (2009), 99-105. https://doi.org/10.3906/mat-0804-24
  • Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J., 10 (1958), 338-358. https://doi.org/10.2748/tmj/1178244668
  • Sekizawa, M., Curvatures of tangent bundles with Cheeger-Gromoll metric, Tokyo J. Math. 14(2) (1991), 407-417. https://doi.org/10.3836/tjm/1270130381
  • Yano, K., Ishihara, S., Tangent and cotangent bundles, Marcel Dekker Inc., New York, 1973.

Statistical structures and Killing vector fields on tangent bundles with respect to two different metrics

Year 2023, Volume: 72 Issue: 3, 815 - 825, 30.09.2023
https://doi.org/10.31801/cfsuasmas.1160135

Abstract

Let $(M,g)$ be a Riemannian manifold and $TM$ be its tangent bundle. The purpose of this paper is to study statistical structures on $TM$ with respect to the metrics $G_{1}=^{c}g+^{v}(fg)$ and $G_{2}=^{s}g_{f}+^{h}g,\ $ where $f$ is a smooth function on $M,$ $^{c}g$ is the complete lift of $g$, $^{v}(fg)$ is the vertical lift of $fg$, $^{s}g_{f}$ is a metric obtained by rescaling the Sasaki metric by a smooth function $f$ and $^{h}g$ is the horizontal lift of $g.$ Moreover, we give some results about Killing vector fields on $TM$ with respect to these metrics.

References

  • Abbassi, M. T. K., Sarih, M., On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math. (Brno), 41 (2005), 71-92.
  • Altunbaş, M, Gezer, A., Bilen, L., Remarks about the Kaluza-Klein metric on tangent bundle, Int. J. Geom. Met. Mod. Phys., 16(3) (2019), 1950040. https://doi.org/10.1142/S0219887819500403
  • Amari, S., Differential geometric methods in statistics- Lect. Notes in Stats., Springer, New York, 1985.
  • Anastasiei, M., Locally conformal Kaehler structures on tangent bundle of a space form, Libertas Math., 19 (1999), 71-76.
  • Balan, V., Peyghan, E., Sharahi, E., Statistical structures on the tangent bundle of a statistical manifold with Sasaki metric, Hacettepe J. Math. Stat., 49(1) (2020), 120-135. https://doi.org/10.15672/HJMS.2019.667
  • Dombrowski, P., On the geometry of the tangent bundle, J. Reine Angew. Math., 210 (1962), 73-88. https://doi.org/10.1515/crll.1962.210.73
  • Gezer, A., Altunbaş, M., Some notes concerning Riemannian metrics of Cheeger Gromoll type, J. Math. Anal. App., 396(1) (2012), 119-132. https://doi.org/10.1016/j.jmaa.2012.06.011
  • Gezer, A., Bilen, L., Karaman, C¸ ., Altunba¸s, M., Curvature properties of Riemannian metrics of the forms Sgf +Hg on the tangent bundle over a Riemannian manifold (M,g), Int. Elec. J. Geo., 8(2) (2015), 181-194. https://doi.org/10.36890/iejg.592306
  • Gezer, A., Ozkan, M., Notes on the tangent bundle with deformed complete lift metric, Turkish J. Math., 38 (2014), 1038-1049. https://doi.org/10.3906/mat-1402-30
  • Lauritzen, S., Statistical manifolds. In Differential geometry in statistical inference, IMS lecture notes monograph series (10), Institute of Mathematical Statistics, Hyward, CA, USA, 96-163, 1987.
  • Peyghan, E., Seifipour, D., Blaga, A., On the geometry of lift metrics and lift connections on the tangent bundle, Turkish J. Math., 46(6) (2022), 2335-2352. https://doi.org/10.55730/1300-0098.3272
  • Peyghan, E., Seifipour, D., Gezer, A., Statistical structures on tangent bundles and Lie groups. Hacettepe J. Math. Stat., 50 (2021), 1140-1154. https://doi.org/10.15672/hujms.645070
  • Salimov, A., Kazimova, S., Geodesics of the Cheeger-Gromoll metric, Turkish J. Math., 33(1) (2009), 99-105. https://doi.org/10.3906/mat-0804-24
  • Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J., 10 (1958), 338-358. https://doi.org/10.2748/tmj/1178244668
  • Sekizawa, M., Curvatures of tangent bundles with Cheeger-Gromoll metric, Tokyo J. Math. 14(2) (1991), 407-417. https://doi.org/10.3836/tjm/1270130381
  • Yano, K., Ishihara, S., Tangent and cotangent bundles, Marcel Dekker Inc., New York, 1973.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Murat Altunbaş 0000-0002-0371-9913

Publication Date September 30, 2023
Submission Date August 10, 2022
Acceptance Date May 23, 2023
Published in Issue Year 2023 Volume: 72 Issue: 3

Cite

APA Altunbaş, M. (2023). Statistical structures and Killing vector fields on tangent bundles with respect to two different metrics. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(3), 815-825. https://doi.org/10.31801/cfsuasmas.1160135
AMA Altunbaş M. Statistical structures and Killing vector fields on tangent bundles with respect to two different metrics. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2023;72(3):815-825. doi:10.31801/cfsuasmas.1160135
Chicago Altunbaş, Murat. “Statistical Structures and Killing Vector Fields on Tangent Bundles With Respect to Two Different Metrics”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 3 (September 2023): 815-25. https://doi.org/10.31801/cfsuasmas.1160135.
EndNote Altunbaş M (September 1, 2023) Statistical structures and Killing vector fields on tangent bundles with respect to two different metrics. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 3 815–825.
IEEE M. Altunbaş, “Statistical structures and Killing vector fields on tangent bundles with respect to two different metrics”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 3, pp. 815–825, 2023, doi: 10.31801/cfsuasmas.1160135.
ISNAD Altunbaş, Murat. “Statistical Structures and Killing Vector Fields on Tangent Bundles With Respect to Two Different Metrics”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/3 (September 2023), 815-825. https://doi.org/10.31801/cfsuasmas.1160135.
JAMA Altunbaş M. Statistical structures and Killing vector fields on tangent bundles with respect to two different metrics. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:815–825.
MLA Altunbaş, Murat. “Statistical Structures and Killing Vector Fields on Tangent Bundles With Respect to Two Different Metrics”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 3, 2023, pp. 815-2, doi:10.31801/cfsuasmas.1160135.
Vancouver Altunbaş M. Statistical structures and Killing vector fields on tangent bundles with respect to two different metrics. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(3):815-2.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.