Research Article
BibTex RIS Cite

Existence of solutions for impulsive boundary value problems on infinite intervals

Year 2023, Volume: 72 Issue: 3, 721 - 736, 30.09.2023
https://doi.org/10.31801/cfsuasmas.1186785

Abstract

The paper deals with the existence of solutions for a general class of second-order nonlinear impulsive boundary value problems defined on an infinite interval. The main innovative aspects of the study are that the results are obtained under relatively mild conditions and the use of principal and nonprincipal solutions that were obtained in a very recent study. Additional results about the existence of bounded solutions are also provided, and theoretical results are supported by an illustrative example.

References

  • Agarwal, R. P., O’Regan, D., Infinite Interval Problems for Differential, Difference and Integral Equations, Netherlands: Kluwer Academic Publisher, 2001. https://doi.org/10.1007/978-94-010-0718-4.
  • Akgöl, S. D., Zafer, A., Boundary value problems on half-line for second-order nonlinear impulsive differential equations, Math. Meth. Appl. Sci., 41 (2018), 5459–5465. https://doi.org/10.1002/mma.5089
  • Akgöl, S.D., Zafer, A., A fixed point approach to singular impulsive boundary value problems, AIP Conference Proceedings, 1863 (2017), 140003. https://doi.org/10.1063/1.4992310
  • Akgöl, S. D., Zafer, A., Prescribed asymptotic behavior of second-order impulsive differential equations via principal and nonprincipal solutions, J. Math. Anal. Appl., 503(2) (2021), 125311. https://doi.org/10.1016/j.jmaa.2021.125311
  • Akgöl, S. D., Zafer, A., Leighton and Wong type oscillation theorems for impulsive differential equations, Appl. Math. Lett., 121 (2021), 107513. https://doi.org/10.1016/j.aml.2021.107513
  • Bainov, D., Simeonov, P., Impulsive Differential Equations: Asymptotic Properties of the Solutions, World Scientific, Singapore, 1995. https://doi.org/10.1142/2413
  • Ertem, T., Zafer, A., Existence of solutions for a class of nonlinear boundary value problems on half-line, Bound. Value Probl., 43 (2012). https://doi.org/10.1186/1687-2770-2012-43
  • Hanche-Olsen, H., Holden, H., The Kolmogorov-Riesz compactness theorem, Expo. Math., 28 (2010), 385-394. https://doi.org/10.1016/j.exmath.2010.03.001
  • Iswarya, M., Raja, R., Rajchakit, G., Cao, J., Alzabut, J., Huang, C., A perspective on graph theory-based stability analysis of impulsive stochastic recurrent neural networks with timevarying delays, Adv. Differ. Equ., 502 (2019). https://doi.org/10.1186/s13662-019-2443-3
  • Karaca, İ. Y., Aksoy, S., Existence of positive solutions for second-order impulsive differential equations with integral boundary conditions on the real line, Filomat, 35(12) (2021), 4197-4208. https://doi.org/10.2298/FIL2112197K
  • Kayar, Z., An existence and uniqueness result for linear fractional impulsive boundary value problems as an application of Lyapunov type inequality, Hacet. J. Math. Stat., 47(2) (2018), 287-297. Doi:10.15672/HJMS.2017.463
  • Li, Z., Shu, X. B., Xu, F., The existence of upper and lower solutions to second-order random impulsive differential equation with boundary value problem, AIMS Mathematics, 5(6) (2020), 6189-6210. https://doi.org/10.3934/math.2020398
  • Özbekler, A., Zafer, A., Principal and nonprincipal solutions of impulsive differential equations with applications, Appl. Math. Comput., 216 (2010), 1158-1168. https://doi.org/10.1016/j.amc.2010.02.008
  • Riesz, M., Sur les ensembles compacts de fonctions sommables, Acta Szeged Sect. Math., 6 (1933), 136-142.
  • Royden, H. L., Real Analysis, 2nd. ed. Macmillan, 1968.
  • Samoilenko, A. M., Perestyuk, N. A., Impulsive Differential Equations, World Scientific, 1995.
  • Vinodkumar, A., Senthilkumar, T., Hariharan, S., Alzabut, J., Exponential stabilization of fixed and random time impulsive delay differential system with applications, Math. Biosci. Eng., 18(3) (2021), 2384-2400. https://doi.org/10.3934/mbe.2021121
  • Zada, A., Alam, L., Kumam, P., Kumam, W., Ali, G., Alzabut, J., Controllability of impulsive non–linear delay dynamic systems on time scale, IEEE Access, 8 (2020), 93830-93839. https://doi.org/10.1109/ACCESS.2020.2995328.
Year 2023, Volume: 72 Issue: 3, 721 - 736, 30.09.2023
https://doi.org/10.31801/cfsuasmas.1186785

Abstract

References

  • Agarwal, R. P., O’Regan, D., Infinite Interval Problems for Differential, Difference and Integral Equations, Netherlands: Kluwer Academic Publisher, 2001. https://doi.org/10.1007/978-94-010-0718-4.
  • Akgöl, S. D., Zafer, A., Boundary value problems on half-line for second-order nonlinear impulsive differential equations, Math. Meth. Appl. Sci., 41 (2018), 5459–5465. https://doi.org/10.1002/mma.5089
  • Akgöl, S.D., Zafer, A., A fixed point approach to singular impulsive boundary value problems, AIP Conference Proceedings, 1863 (2017), 140003. https://doi.org/10.1063/1.4992310
  • Akgöl, S. D., Zafer, A., Prescribed asymptotic behavior of second-order impulsive differential equations via principal and nonprincipal solutions, J. Math. Anal. Appl., 503(2) (2021), 125311. https://doi.org/10.1016/j.jmaa.2021.125311
  • Akgöl, S. D., Zafer, A., Leighton and Wong type oscillation theorems for impulsive differential equations, Appl. Math. Lett., 121 (2021), 107513. https://doi.org/10.1016/j.aml.2021.107513
  • Bainov, D., Simeonov, P., Impulsive Differential Equations: Asymptotic Properties of the Solutions, World Scientific, Singapore, 1995. https://doi.org/10.1142/2413
  • Ertem, T., Zafer, A., Existence of solutions for a class of nonlinear boundary value problems on half-line, Bound. Value Probl., 43 (2012). https://doi.org/10.1186/1687-2770-2012-43
  • Hanche-Olsen, H., Holden, H., The Kolmogorov-Riesz compactness theorem, Expo. Math., 28 (2010), 385-394. https://doi.org/10.1016/j.exmath.2010.03.001
  • Iswarya, M., Raja, R., Rajchakit, G., Cao, J., Alzabut, J., Huang, C., A perspective on graph theory-based stability analysis of impulsive stochastic recurrent neural networks with timevarying delays, Adv. Differ. Equ., 502 (2019). https://doi.org/10.1186/s13662-019-2443-3
  • Karaca, İ. Y., Aksoy, S., Existence of positive solutions for second-order impulsive differential equations with integral boundary conditions on the real line, Filomat, 35(12) (2021), 4197-4208. https://doi.org/10.2298/FIL2112197K
  • Kayar, Z., An existence and uniqueness result for linear fractional impulsive boundary value problems as an application of Lyapunov type inequality, Hacet. J. Math. Stat., 47(2) (2018), 287-297. Doi:10.15672/HJMS.2017.463
  • Li, Z., Shu, X. B., Xu, F., The existence of upper and lower solutions to second-order random impulsive differential equation with boundary value problem, AIMS Mathematics, 5(6) (2020), 6189-6210. https://doi.org/10.3934/math.2020398
  • Özbekler, A., Zafer, A., Principal and nonprincipal solutions of impulsive differential equations with applications, Appl. Math. Comput., 216 (2010), 1158-1168. https://doi.org/10.1016/j.amc.2010.02.008
  • Riesz, M., Sur les ensembles compacts de fonctions sommables, Acta Szeged Sect. Math., 6 (1933), 136-142.
  • Royden, H. L., Real Analysis, 2nd. ed. Macmillan, 1968.
  • Samoilenko, A. M., Perestyuk, N. A., Impulsive Differential Equations, World Scientific, 1995.
  • Vinodkumar, A., Senthilkumar, T., Hariharan, S., Alzabut, J., Exponential stabilization of fixed and random time impulsive delay differential system with applications, Math. Biosci. Eng., 18(3) (2021), 2384-2400. https://doi.org/10.3934/mbe.2021121
  • Zada, A., Alam, L., Kumam, P., Kumam, W., Ali, G., Alzabut, J., Controllability of impulsive non–linear delay dynamic systems on time scale, IEEE Access, 8 (2020), 93830-93839. https://doi.org/10.1109/ACCESS.2020.2995328.
There are 18 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Sibel Doğru Akgöl 0000-0003-3513-1046

Publication Date September 30, 2023
Submission Date October 10, 2022
Acceptance Date March 21, 2023
Published in Issue Year 2023 Volume: 72 Issue: 3

Cite

APA Doğru Akgöl, S. (2023). Existence of solutions for impulsive boundary value problems on infinite intervals. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(3), 721-736. https://doi.org/10.31801/cfsuasmas.1186785
AMA Doğru Akgöl S. Existence of solutions for impulsive boundary value problems on infinite intervals. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2023;72(3):721-736. doi:10.31801/cfsuasmas.1186785
Chicago Doğru Akgöl, Sibel. “Existence of Solutions for Impulsive Boundary Value Problems on Infinite Intervals”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 3 (September 2023): 721-36. https://doi.org/10.31801/cfsuasmas.1186785.
EndNote Doğru Akgöl S (September 1, 2023) Existence of solutions for impulsive boundary value problems on infinite intervals. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 3 721–736.
IEEE S. Doğru Akgöl, “Existence of solutions for impulsive boundary value problems on infinite intervals”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 3, pp. 721–736, 2023, doi: 10.31801/cfsuasmas.1186785.
ISNAD Doğru Akgöl, Sibel. “Existence of Solutions for Impulsive Boundary Value Problems on Infinite Intervals”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/3 (September 2023), 721-736. https://doi.org/10.31801/cfsuasmas.1186785.
JAMA Doğru Akgöl S. Existence of solutions for impulsive boundary value problems on infinite intervals. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:721–736.
MLA Doğru Akgöl, Sibel. “Existence of Solutions for Impulsive Boundary Value Problems on Infinite Intervals”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 3, 2023, pp. 721-36, doi:10.31801/cfsuasmas.1186785.
Vancouver Doğru Akgöl S. Existence of solutions for impulsive boundary value problems on infinite intervals. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(3):721-36.

Cited By

Nonlinear semilinear integro-differential evolution equations with impulsive effects
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
https://doi.org/10.31801/cfsuasmas.1357985

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.