On subflat domains of RD-flat modules
Year 2023,
Volume: 72 Issue: 3, 563 - 569, 30.09.2023
Mücahit Bozkurt
,
Yilmaz Durğun
Abstract
The concept of subflat domain is used to measure how close (or far away) a module is to be flat. A right module is flat if its subflat domain is the entire class of left modules. In this note, we focus on of RD-flat modules that have subflat domain which is exactly the collection of all torsion-free modules, shortly tf-test modules. Properties of subflat domains and of tf-test modules are studied. New characterizations of left P-coherent rings and torsion-free rings by subflat domains of cyclically presented left $R$-modules are obtained.
Supporting Institution
The Scientific and Technological Research Council of Turkey (TUBITAK)
Thanks
We thank the Scientific and Technological Council of Turkey for supporting our study with project number 119F176.
References
- Alahmadi, A. N., Alkan, M., L´opez-Permouth, S. R., Poor modules: The opposite of injectivity, Glasgow Math. J., 52 (2010), 7-17. https://doi.org/10.1017/S001708951000025X
- Alizade, R., Durğun, Y., Test modules for flatness, Rend. Semin. Mat. Univ. Padova, 137 (2017), 75-91. https://doi.org/10.4171/RSMUP/137-4
- Auslander, M., Bridger, M., Stable Module Theory, American Mathematical Society, Providence, 1969.
- Büyükaşık, E., Enochs, E., Rozas, J. R. G., Kafkas-Demirci, G., Rugged modules: The opposite of flatness, Comm. Algebra, 137 (2018), 764-779. https://doi.org/10.1080/00927872.2017.1327066
- Couchot, F., RD-flatness and RD-injectivity, Comm. Algebra, 34(10) (2006), 3675–3689. https://doi.org/10.1080/00927870600860817
- Dauns, J., Fuchs, L., Torsion-freeness for rings with zero divisor, J. Algebra Appl., 3(3) (2004), 221–237. https://doi.org/10.1142/S0219498804000885
- Eklof, P. C., Trlifaj, J., How to make Ext vanish, Bull. London Math. Soc., 33(1) (2001), 41-51. https://doi.org/10.1112/blms/33.1.41
- Enochs, E. E., Jenda, O. M. G., Relative Homological Algebra, Walter de Gruyter & Co., Berlin, 2000.
- Hattori, A., A foundation of torsion theory for modules over general rings, Nagoya Math. J.,
17 (1960), 147–158. http://projecteuclid.org/euclid.nmj/1118800457
- Holston, C., Lopez-Permouth, S. R., Erta¸s, N. O., Rings whose modules have maximal or minimal projectivity domain, J. Pure Appl. Algebra, 216(3) (2012), 673–678. https://doi.org/10.1016/j.jpaa.2011.08.002
- Holston, C., Lopez-Permouth, S. R., Mastromatteo, J., Simental-Rodriguez, J. E., An alternative perspective on projectivity of modules, Glasgow Math. J., 57(1) (2015), 83–99. https://doi.org/10.1017/S0017089514000135
- Lam, T. Y., Lectures on Modules and Rings, Springer-Verlag, New York, 1999.
- Mao, L., Properties of RD-projective and RD-injective modules, Turkish J. Math., 35(2) (2011), 187–205. https://doi.org/10.3906/mat-0904-53
- Mao, L., Ding, N., On divisible and torsionfree modules, Comm. Algebra, 36(2) (2008), 708–731. https://doi.org/10.1080/00927870701724201
- Rotman, J., An Introduction to Homological Algebra, Academic Press, New York, 1979.
- Skljarenko, E. G., Relative homological algebra in the category of modules, Uspehi Mat. Nauk, 33(3) (1978), 85120.
- Stenström, B.T., Pure submodules, Arkiv für Matematik, 7(2) (1967), 159–171. https://doi.org/10.1007/BF02591032
- Trlifaj, J., Whitehead test modules, Trans. Amer. Math. Soc., 348(4) (1996) 1521–1554.
https://doi.org/10.1090/S0002-9947-96-01494-8
- Warfield, R. B., Purity and algebraic compactness for modules, Pacific J. Math., 28 (1969) 699–719. http://projecteuclid.org/euclid.pjm/1102983324
Year 2023,
Volume: 72 Issue: 3, 563 - 569, 30.09.2023
Mücahit Bozkurt
,
Yilmaz Durğun
References
- Alahmadi, A. N., Alkan, M., L´opez-Permouth, S. R., Poor modules: The opposite of injectivity, Glasgow Math. J., 52 (2010), 7-17. https://doi.org/10.1017/S001708951000025X
- Alizade, R., Durğun, Y., Test modules for flatness, Rend. Semin. Mat. Univ. Padova, 137 (2017), 75-91. https://doi.org/10.4171/RSMUP/137-4
- Auslander, M., Bridger, M., Stable Module Theory, American Mathematical Society, Providence, 1969.
- Büyükaşık, E., Enochs, E., Rozas, J. R. G., Kafkas-Demirci, G., Rugged modules: The opposite of flatness, Comm. Algebra, 137 (2018), 764-779. https://doi.org/10.1080/00927872.2017.1327066
- Couchot, F., RD-flatness and RD-injectivity, Comm. Algebra, 34(10) (2006), 3675–3689. https://doi.org/10.1080/00927870600860817
- Dauns, J., Fuchs, L., Torsion-freeness for rings with zero divisor, J. Algebra Appl., 3(3) (2004), 221–237. https://doi.org/10.1142/S0219498804000885
- Eklof, P. C., Trlifaj, J., How to make Ext vanish, Bull. London Math. Soc., 33(1) (2001), 41-51. https://doi.org/10.1112/blms/33.1.41
- Enochs, E. E., Jenda, O. M. G., Relative Homological Algebra, Walter de Gruyter & Co., Berlin, 2000.
- Hattori, A., A foundation of torsion theory for modules over general rings, Nagoya Math. J.,
17 (1960), 147–158. http://projecteuclid.org/euclid.nmj/1118800457
- Holston, C., Lopez-Permouth, S. R., Erta¸s, N. O., Rings whose modules have maximal or minimal projectivity domain, J. Pure Appl. Algebra, 216(3) (2012), 673–678. https://doi.org/10.1016/j.jpaa.2011.08.002
- Holston, C., Lopez-Permouth, S. R., Mastromatteo, J., Simental-Rodriguez, J. E., An alternative perspective on projectivity of modules, Glasgow Math. J., 57(1) (2015), 83–99. https://doi.org/10.1017/S0017089514000135
- Lam, T. Y., Lectures on Modules and Rings, Springer-Verlag, New York, 1999.
- Mao, L., Properties of RD-projective and RD-injective modules, Turkish J. Math., 35(2) (2011), 187–205. https://doi.org/10.3906/mat-0904-53
- Mao, L., Ding, N., On divisible and torsionfree modules, Comm. Algebra, 36(2) (2008), 708–731. https://doi.org/10.1080/00927870701724201
- Rotman, J., An Introduction to Homological Algebra, Academic Press, New York, 1979.
- Skljarenko, E. G., Relative homological algebra in the category of modules, Uspehi Mat. Nauk, 33(3) (1978), 85120.
- Stenström, B.T., Pure submodules, Arkiv für Matematik, 7(2) (1967), 159–171. https://doi.org/10.1007/BF02591032
- Trlifaj, J., Whitehead test modules, Trans. Amer. Math. Soc., 348(4) (1996) 1521–1554.
https://doi.org/10.1090/S0002-9947-96-01494-8
- Warfield, R. B., Purity and algebraic compactness for modules, Pacific J. Math., 28 (1969) 699–719. http://projecteuclid.org/euclid.pjm/1102983324