Demonstration of the strength of strong convexity via Jensen's gap
Year 2023,
Volume: 72 Issue: 4, 1019 - 1033, 29.12.2023
Asia K
Shahid Khan
Abstract
This paper demonstrates through a numerical experiment that utilization of strongly convex functions strengthens the bound presented for the Jensen gap in [4]. Consequently the improved result enables to present improvements in the bounds obtained for the Hölder and Hermite-Hadamard gaps and proposes such improvements in the results obtained for various entropies and divergences in information theory.
References
- Adamek, M., On a Jensen-type inequality for F-convex functions, Math. Inequal. Appl., 22(2019), 1355-1364. https://doi.org/10.7153/mia-2019-22-93
- Adil Khan, M., Khan, S., Chu, Y.-M., A new bound for the Jensen gap with applications in information theory, IEEE Access, 8 (2020), 98001-98008. https://doi: 10.1109/ACCESS.2020.2997397
- Adil Khan, M., Khan, S., Chu, Y.-M., New estimates for the Jensen gap using s-convexity with applications, Front. Phys., 8 (2020), Article ID 313. https://doi: 10.3389/fphy.2020.00313
- Adil Khan, M., Khan, S., Ullah, I., Khan, K. A., Chu, Y.-M., A novel approach to the Jensen gap through Taylor’s theorem, Math. Methods Appl. Sci., 44(5) (2020), 3324–3333. https://doi.org/10.1002/mma.6944
- Adil Khan, M., Mohammad, N., Nwaeze, E. R., Chu, Y.-M., Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Difference Equ., 2020 (2020), Article ID 99. https://doi.org/10.1186/s13662-020-02559-3
- Adil Khan, M., Pecaric, D. Pecaric, J., Bounds for Shannon and Zipf-Mandelbrot entropies, Math. Methods Appl. Sci., 40 (2017), 7316-7322. https://doi.org/10.1002/mma.4531
- Adil Khan, M., Zaheer Ullah, S., Chu, Y.-M., The concept of coordinate strongly convex functions and related inequalities, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, 113 (2019), 2235-2251. https://doi.org/10.1007/s13398-018-0615-8
- Ahmad, K., Adil Khan, M., Khan, S., Ali, A., Chu, Y.-M., New estimates for generalized Shannon and Zipf-Mandelbrot entropies via convexity results, Results Phys., 18 (2020), Article ID 103305. https://doi.org/10.1016/j.rinp.2020.103305
- Ansari, Q. H., Lalitha, C. S., Mehta, M., Generalized Convexity, Nonsmooth Variational Inequalities and Nonsmooth Optimization, Chapman and Hall/CRC, 2019. https://doi.org/10.1201/b15244
- Azar, S. A., Jensen’s inequality in finance, Int. Adv. Econ. Res., 14 (2008), 433-440. https://doi.org/10.1007/s11294-008-9172-9
- Bakula, M. K., Peˇcari´c, J., On the Jensen’s inequality for convex functions on the coordinates in a rectangle from the plane, Taiwanese J. Math., 10 (2006), 1271-1292.
https://doi.org/10.11650/twjm/1500557302
- Beesack, P. R., Pecaric, J., On Jessen’s inequality for convex functions, J. Math. Anal. Appl., 110(2) (1985), 536-552. https://doi.org/10.1016/0022-247X(85)90315-4
- Bibi, R., Nosheen, A., Bano, S., Pecaric, J., Generalizations of the Jensen functional involving diamond integrals via Abel-Gontscharoff interpolation, J. Inequal. Appl., 2022 (2022), Article ID 15. https://doi.org/10.1186/s13660-021-02748-y
- Bradanovic, S. I., More accurate majorization inequalities obtained via superquadraticity and convexity with application to entropies, Mediterr. J. Math., 18 (2021), Article ID 79.
https://doi.org/10.1007/s00009-021-01708-6
- Butt, S. I., Akdemir, A. O., Nasir, J., Jarad, F., Some Hermite-Jensen-Mercer like inequalities for convex functions through a certain generalized fractional integrals and related results, Miskolc Math. Notes, 21 (2020), 689-715. https://doi.org/10.18514/MMN.2020.3339
- Butt, S. I., Yousaf, S., Ahmad, H., Nofal, T. A., Jensen–Mercer inequality and related results in the fractal sense with applications, Fractals, 30(1) (2021), Article ID 2240008. https://doi.org/10.1142/S0218348X22400084
- Cloud, M. J., Drachman, B. C., Lebedev, L. P., Inequalities with Applications to Engineering, Springer: Cham Heidelberg New York Dordrecht London, 2014.https://doi.org/10.1007/978-3-319-05311-0
- Deng, Y., Ullah, H., Adil Khan, M., Iqbal, S., Wu, S., Refinements of Jensen’s inequality via majorization results with applications in the information theory, J. Math., 2021 (2021), Article ID 1951799. https://doi.org/10.1155/2021/1951799
- Dragomir, S. S., A new refinement of Jensen’s inequality in linear spaces with applications, Math. Comput. Modelling, 52(9) (2010), 1497-1505. https://doi.org/10.1016/j.mcm.2010.05.035
- Dragomir, S. S., A refinement of Jensen’s inequality with applications for f-divergence measures, Taiwanese J. Math., 14 (2010), 153-164. https://doi.org/10.11650/twjm/1500405733
- Dragomir, S. S., Nikodem, K., Jensen’s and Hermite-Hadamard’s type inequalities for lower and strongly convex functions on normed spaces, Bull. Iran. Math. Soc., 44 (2018), 1337-1349.
https://doi.org/10.1007/s41980-018-0095-9
- Erdem, Y., Ogunmez, H., Budak, H., Some generalized inequalities of Hermite-Hadamard type for strongly s-convex functions, New Trend Math. Sci., 5(3) (2017), 22-32.
http://dx.doi.org/10.20852/ntmsci.2017.181
- Erdem, Y., Ogunmez, H., Budak, H., On some Hermite-Hadamard type inequalities for strongly s-convex functions, New Trend Math. Sci., 5(3) (2017), 154-161. https://doi.org/10.20852/ntmsci.2017.192
- Han, W., Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics, Math. Mech. Solids, 23 (2018), 279-293. https://doi.org/10.1177/1081286517713342
- Horvath, L., Pecaric, D., Pecaric, J., Estimations of f-and Renyi divergences by using a cyclic refinement of the Jensen’s inequality, Bull. Malays. Math. Sci. Soc., 42(3) (2019), 933-946.
https://doi.org/10.1007/s40840-017-0526-4
- Iqbal, A., Adil Khan, M., Ullah, S., Chu, Y.-M., Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Spaces, 2020 (2020), Article ID 9845407. https://doi.org/10.1155/2020/9845407
- Kashuri, A., Liko, R., Ali, M. A., Budak, H., New estimates of Gauss-Jacobi and trapezium type inequalities for strongly $(h_1, h_2)$-preinvex mappings via general fractional integrals, Int. J. Nonlinear Anal. Appl., 12(1) (2021), 979-996. https://doi.org/10.22075/IJNAA.2020.19718.2096
- Khan, S., Adil Khan, M., Butt, S. I., Chu, Y.-M., A new bound for the Jensen gap pertaining twice differentiable functions with applications, Adv. Difference Equ., 2020 (2020), Article ID 333. https://doi.org/10.1186/s13662-020-02794-8
- Khan, Z. A., Shah, K., Discrete fractional inequalities pertaining a fractional sum operator with some applications on time scales, J. Funct. Spaces, 2021 (2021), Article ID 8734535. https://doi.org/10.1155/2021/8734535
- Khurshid, Y., Adil Khan, M., Chu, Y.-M., Conformable integral inequalities of the Hermite-Hadamard type in terms of GG- and GA-convexities, J. Funct. Spaces, 2019 (2019), Article ID 6926107. https://doi.org/10.1155/2019/6926107
- Khurshid, Y., Adil Khan, M., Chu, Y.-M., Khan, Z. A., Hermite-Hadamard-Fejer inequalities for conformable fractional integrals via preinvex functions, J. Funct. Spaces, 2019 (2019), Article ID 3146210. https://doi.org/10.1155/2019/3146210
- Lakshmikantham, V., Vatsala, A. S., Theory of Differential and Integral Inequalities with Initial Time Difference and Applications, Springer: Berlin, 1999. https://doi.org/10.1007/978-94-011-4577-0-12
- Liao, J. G., Berg, A., Sharpening Jensen’s inequality, Amer. Statist., 4 (2018), 1-4. https://doi.org/10.1080/00031305.2017.1419145
- Lin, Q., Jensen inequality for superlinear expectations, Stat. Probabil. Lett., 151 (2019), 79-83. https://doi.org/10.1016/j.spl.2019.03.006
- Merentes, N., Nikodem, K., Remarks on strongly convex functions, Aequat. Math., 80 (2010), 193-199. https://doi.org/10.1007/s00010-010-0043-0
- Moradi, H. R., Omidvar, M. E., Adil Khan, M., Nikodem, K., Around Jensen’s inequality for strongly convex functions, Aequat. Math., 92 (2018), 25–37. https://doi.org/10.1007/s00010-017-0496-5
- Niezgoda, M., A Jensen-Sherman type inequality with a control map for G–invariant convex functions, Positivity, 25 (2021), 431-446. https://doi.org/10.1007/s11117-020-00769-3
- Nikodem, K., On Strongly Convex Functions and Related Classes of Functions, Handbook of Functional Equations, Springer, New York, NY, USA, 2014, 365-405. https://doi.org/10.1007/978-1-4939-1246-9-16
- Nikolova, L., Persson, L.-E., Varosanec, S., Continuous refinements of some Jensen-type inequalities via strong convexity with applications, J. Inequal. Appl., 2022 (2022), Article ID 63. https://doi.org/10.1186/s13660-022-02801-4
- Rubab, F., Nabi, H. Khan, A. R., Generalization and refinements of Jensen inequality, J. Math. Anal., 12(5) (2021), 1-27. https://doi.org/10.54379/jma-2021-5-1
- Sahoo, S. K., Tariq, M., Ahmad, H., Nasir, J., Aydi, H., Mukheimer, A., New Ostrowskitype fractional integral inequalities via generalized exponential-type convex functions and applications, Symmetry, 13(8) (2021), Article ID 1429. https://doi.org/10.3390/sym13081429
- Song, Y.-Q., Adil Khan, M., Zaheer Ullah, S., Chu, Y.-M., Integral inequalities involving strongly convex functions, J. Funct. Spaces, 2018 (2018), Article ID 6595921. https://doi.org/10.1155/2018/6595921
- Thompson, C. J., Inequality with applications in statistical mechanics, J. Math. Phy., 6 (1965), 1812-1813. https://doi.org/10.1063/1.1704727
- Zaheer Ullah, S., Adil Khan, M., Khan, Z. A. H., Chu, Y.-M., Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Spaces, 2019 (2019), Article ID 9487823. https://doi.org/10.1155/2019/9487823
- Zhongyi, Z., Farid, G., Mahreen, K., Inequalities for unified integral operators via strongly $(\alpha, h − m)$-convexity, J. Funct. Spaces, 2021 (2021), Article ID 6675826. https://doi.org/10.1155/2021/6675826