Research Article
BibTex RIS Cite

Demonstration of the strength of strong convexity via Jensen's gap

Year 2023, Volume: 72 Issue: 4, 1019 - 1033, 29.12.2023
https://doi.org/10.31801/cfsuasmas.1186649

Abstract

This paper demonstrates through a numerical experiment that utilization of strongly convex functions strengthens the bound presented for the Jensen gap in [4]. Consequently the improved result enables to present improvements in the bounds obtained for the Hölder and Hermite-Hadamard gaps and proposes such improvements in the results obtained for various entropies and divergences in information theory.

References

  • Adamek, M., On a Jensen-type inequality for F-convex functions, Math. Inequal. Appl., 22(2019), 1355-1364. https://doi.org/10.7153/mia-2019-22-93
  • Adil Khan, M., Khan, S., Chu, Y.-M., A new bound for the Jensen gap with applications in information theory, IEEE Access, 8 (2020), 98001-98008. https://doi: 10.1109/ACCESS.2020.2997397
  • Adil Khan, M., Khan, S., Chu, Y.-M., New estimates for the Jensen gap using s-convexity with applications, Front. Phys., 8 (2020), Article ID 313. https://doi: 10.3389/fphy.2020.00313
  • Adil Khan, M., Khan, S., Ullah, I., Khan, K. A., Chu, Y.-M., A novel approach to the Jensen gap through Taylor’s theorem, Math. Methods Appl. Sci., 44(5) (2020), 3324–3333. https://doi.org/10.1002/mma.6944
  • Adil Khan, M., Mohammad, N., Nwaeze, E. R., Chu, Y.-M., Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Difference Equ., 2020 (2020), Article ID 99. https://doi.org/10.1186/s13662-020-02559-3
  • Adil Khan, M., Pecaric, D. Pecaric, J., Bounds for Shannon and Zipf-Mandelbrot entropies, Math. Methods Appl. Sci., 40 (2017), 7316-7322. https://doi.org/10.1002/mma.4531
  • Adil Khan, M., Zaheer Ullah, S., Chu, Y.-M., The concept of coordinate strongly convex functions and related inequalities, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, 113 (2019), 2235-2251. https://doi.org/10.1007/s13398-018-0615-8
  • Ahmad, K., Adil Khan, M., Khan, S., Ali, A., Chu, Y.-M., New estimates for generalized Shannon and Zipf-Mandelbrot entropies via convexity results, Results Phys., 18 (2020), Article ID 103305. https://doi.org/10.1016/j.rinp.2020.103305
  • Ansari, Q. H., Lalitha, C. S., Mehta, M., Generalized Convexity, Nonsmooth Variational Inequalities and Nonsmooth Optimization, Chapman and Hall/CRC, 2019. https://doi.org/10.1201/b15244
  • Azar, S. A., Jensen’s inequality in finance, Int. Adv. Econ. Res., 14 (2008), 433-440. https://doi.org/10.1007/s11294-008-9172-9
  • Bakula, M. K., Peˇcari´c, J., On the Jensen’s inequality for convex functions on the coordinates in a rectangle from the plane, Taiwanese J. Math., 10 (2006), 1271-1292. https://doi.org/10.11650/twjm/1500557302
  • Beesack, P. R., Pecaric, J., On Jessen’s inequality for convex functions, J. Math. Anal. Appl., 110(2) (1985), 536-552. https://doi.org/10.1016/0022-247X(85)90315-4
  • Bibi, R., Nosheen, A., Bano, S., Pecaric, J., Generalizations of the Jensen functional involving diamond integrals via Abel-Gontscharoff interpolation, J. Inequal. Appl., 2022 (2022), Article ID 15. https://doi.org/10.1186/s13660-021-02748-y
  • Bradanovic, S. I., More accurate majorization inequalities obtained via superquadraticity and convexity with application to entropies, Mediterr. J. Math., 18 (2021), Article ID 79. https://doi.org/10.1007/s00009-021-01708-6
  • Butt, S. I., Akdemir, A. O., Nasir, J., Jarad, F., Some Hermite-Jensen-Mercer like inequalities for convex functions through a certain generalized fractional integrals and related results, Miskolc Math. Notes, 21 (2020), 689-715. https://doi.org/10.18514/MMN.2020.3339
  • Butt, S. I., Yousaf, S., Ahmad, H., Nofal, T. A., Jensen–Mercer inequality and related results in the fractal sense with applications, Fractals, 30(1) (2021), Article ID 2240008. https://doi.org/10.1142/S0218348X22400084
  • Cloud, M. J., Drachman, B. C., Lebedev, L. P., Inequalities with Applications to Engineering, Springer: Cham Heidelberg New York Dordrecht London, 2014.https://doi.org/10.1007/978-3-319-05311-0
  • Deng, Y., Ullah, H., Adil Khan, M., Iqbal, S., Wu, S., Refinements of Jensen’s inequality via majorization results with applications in the information theory, J. Math., 2021 (2021), Article ID 1951799. https://doi.org/10.1155/2021/1951799
  • Dragomir, S. S., A new refinement of Jensen’s inequality in linear spaces with applications, Math. Comput. Modelling, 52(9) (2010), 1497-1505. https://doi.org/10.1016/j.mcm.2010.05.035
  • Dragomir, S. S., A refinement of Jensen’s inequality with applications for f-divergence measures, Taiwanese J. Math., 14 (2010), 153-164. https://doi.org/10.11650/twjm/1500405733
  • Dragomir, S. S., Nikodem, K., Jensen’s and Hermite-Hadamard’s type inequalities for lower and strongly convex functions on normed spaces, Bull. Iran. Math. Soc., 44 (2018), 1337-1349. https://doi.org/10.1007/s41980-018-0095-9
  • Erdem, Y., Ogunmez, H., Budak, H., Some generalized inequalities of Hermite-Hadamard type for strongly s-convex functions, New Trend Math. Sci., 5(3) (2017), 22-32. http://dx.doi.org/10.20852/ntmsci.2017.181
  • Erdem, Y., Ogunmez, H., Budak, H., On some Hermite-Hadamard type inequalities for strongly s-convex functions, New Trend Math. Sci., 5(3) (2017), 154-161. https://doi.org/10.20852/ntmsci.2017.192
  • Han, W., Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics, Math. Mech. Solids, 23 (2018), 279-293. https://doi.org/10.1177/1081286517713342
  • Horvath, L., Pecaric, D., Pecaric, J., Estimations of f-and Renyi divergences by using a cyclic refinement of the Jensen’s inequality, Bull. Malays. Math. Sci. Soc., 42(3) (2019), 933-946. https://doi.org/10.1007/s40840-017-0526-4
  • Iqbal, A., Adil Khan, M., Ullah, S., Chu, Y.-M., Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Spaces, 2020 (2020), Article ID 9845407. https://doi.org/10.1155/2020/9845407
  • Kashuri, A., Liko, R., Ali, M. A., Budak, H., New estimates of Gauss-Jacobi and trapezium type inequalities for strongly $(h_1, h_2)$-preinvex mappings via general fractional integrals, Int. J. Nonlinear Anal. Appl., 12(1) (2021), 979-996. https://doi.org/10.22075/IJNAA.2020.19718.2096
  • Khan, S., Adil Khan, M., Butt, S. I., Chu, Y.-M., A new bound for the Jensen gap pertaining twice differentiable functions with applications, Adv. Difference Equ., 2020 (2020), Article ID 333. https://doi.org/10.1186/s13662-020-02794-8
  • Khan, Z. A., Shah, K., Discrete fractional inequalities pertaining a fractional sum operator with some applications on time scales, J. Funct. Spaces, 2021 (2021), Article ID 8734535. https://doi.org/10.1155/2021/8734535
  • Khurshid, Y., Adil Khan, M., Chu, Y.-M., Conformable integral inequalities of the Hermite-Hadamard type in terms of GG- and GA-convexities, J. Funct. Spaces, 2019 (2019), Article ID 6926107. https://doi.org/10.1155/2019/6926107
  • Khurshid, Y., Adil Khan, M., Chu, Y.-M., Khan, Z. A., Hermite-Hadamard-Fejer inequalities for conformable fractional integrals via preinvex functions, J. Funct. Spaces, 2019 (2019), Article ID 3146210. https://doi.org/10.1155/2019/3146210
  • Lakshmikantham, V., Vatsala, A. S., Theory of Differential and Integral Inequalities with Initial Time Difference and Applications, Springer: Berlin, 1999. https://doi.org/10.1007/978-94-011-4577-0-12
  • Liao, J. G., Berg, A., Sharpening Jensen’s inequality, Amer. Statist., 4 (2018), 1-4. https://doi.org/10.1080/00031305.2017.1419145
  • Lin, Q., Jensen inequality for superlinear expectations, Stat. Probabil. Lett., 151 (2019), 79-83. https://doi.org/10.1016/j.spl.2019.03.006
  • Merentes, N., Nikodem, K., Remarks on strongly convex functions, Aequat. Math., 80 (2010), 193-199. https://doi.org/10.1007/s00010-010-0043-0
  • Moradi, H. R., Omidvar, M. E., Adil Khan, M., Nikodem, K., Around Jensen’s inequality for strongly convex functions, Aequat. Math., 92 (2018), 25–37. https://doi.org/10.1007/s00010-017-0496-5
  • Niezgoda, M., A Jensen-Sherman type inequality with a control map for G–invariant convex functions, Positivity, 25 (2021), 431-446. https://doi.org/10.1007/s11117-020-00769-3
  • Nikodem, K., On Strongly Convex Functions and Related Classes of Functions, Handbook of Functional Equations, Springer, New York, NY, USA, 2014, 365-405. https://doi.org/10.1007/978-1-4939-1246-9-16
  • Nikolova, L., Persson, L.-E., Varosanec, S., Continuous refinements of some Jensen-type inequalities via strong convexity with applications, J. Inequal. Appl., 2022 (2022), Article ID 63. https://doi.org/10.1186/s13660-022-02801-4
  • Rubab, F., Nabi, H. Khan, A. R., Generalization and refinements of Jensen inequality, J. Math. Anal., 12(5) (2021), 1-27. https://doi.org/10.54379/jma-2021-5-1
  • Sahoo, S. K., Tariq, M., Ahmad, H., Nasir, J., Aydi, H., Mukheimer, A., New Ostrowskitype fractional integral inequalities via generalized exponential-type convex functions and applications, Symmetry, 13(8) (2021), Article ID 1429. https://doi.org/10.3390/sym13081429
  • Song, Y.-Q., Adil Khan, M., Zaheer Ullah, S., Chu, Y.-M., Integral inequalities involving strongly convex functions, J. Funct. Spaces, 2018 (2018), Article ID 6595921. https://doi.org/10.1155/2018/6595921
  • Thompson, C. J., Inequality with applications in statistical mechanics, J. Math. Phy., 6 (1965), 1812-1813. https://doi.org/10.1063/1.1704727
  • Zaheer Ullah, S., Adil Khan, M., Khan, Z. A. H., Chu, Y.-M., Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Spaces, 2019 (2019), Article ID 9487823. https://doi.org/10.1155/2019/9487823
  • Zhongyi, Z., Farid, G., Mahreen, K., Inequalities for unified integral operators via strongly $(\alpha, h − m)$-convexity, J. Funct. Spaces, 2021 (2021), Article ID 6675826. https://doi.org/10.1155/2021/6675826
Year 2023, Volume: 72 Issue: 4, 1019 - 1033, 29.12.2023
https://doi.org/10.31801/cfsuasmas.1186649

Abstract

References

  • Adamek, M., On a Jensen-type inequality for F-convex functions, Math. Inequal. Appl., 22(2019), 1355-1364. https://doi.org/10.7153/mia-2019-22-93
  • Adil Khan, M., Khan, S., Chu, Y.-M., A new bound for the Jensen gap with applications in information theory, IEEE Access, 8 (2020), 98001-98008. https://doi: 10.1109/ACCESS.2020.2997397
  • Adil Khan, M., Khan, S., Chu, Y.-M., New estimates for the Jensen gap using s-convexity with applications, Front. Phys., 8 (2020), Article ID 313. https://doi: 10.3389/fphy.2020.00313
  • Adil Khan, M., Khan, S., Ullah, I., Khan, K. A., Chu, Y.-M., A novel approach to the Jensen gap through Taylor’s theorem, Math. Methods Appl. Sci., 44(5) (2020), 3324–3333. https://doi.org/10.1002/mma.6944
  • Adil Khan, M., Mohammad, N., Nwaeze, E. R., Chu, Y.-M., Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Difference Equ., 2020 (2020), Article ID 99. https://doi.org/10.1186/s13662-020-02559-3
  • Adil Khan, M., Pecaric, D. Pecaric, J., Bounds for Shannon and Zipf-Mandelbrot entropies, Math. Methods Appl. Sci., 40 (2017), 7316-7322. https://doi.org/10.1002/mma.4531
  • Adil Khan, M., Zaheer Ullah, S., Chu, Y.-M., The concept of coordinate strongly convex functions and related inequalities, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, 113 (2019), 2235-2251. https://doi.org/10.1007/s13398-018-0615-8
  • Ahmad, K., Adil Khan, M., Khan, S., Ali, A., Chu, Y.-M., New estimates for generalized Shannon and Zipf-Mandelbrot entropies via convexity results, Results Phys., 18 (2020), Article ID 103305. https://doi.org/10.1016/j.rinp.2020.103305
  • Ansari, Q. H., Lalitha, C. S., Mehta, M., Generalized Convexity, Nonsmooth Variational Inequalities and Nonsmooth Optimization, Chapman and Hall/CRC, 2019. https://doi.org/10.1201/b15244
  • Azar, S. A., Jensen’s inequality in finance, Int. Adv. Econ. Res., 14 (2008), 433-440. https://doi.org/10.1007/s11294-008-9172-9
  • Bakula, M. K., Peˇcari´c, J., On the Jensen’s inequality for convex functions on the coordinates in a rectangle from the plane, Taiwanese J. Math., 10 (2006), 1271-1292. https://doi.org/10.11650/twjm/1500557302
  • Beesack, P. R., Pecaric, J., On Jessen’s inequality for convex functions, J. Math. Anal. Appl., 110(2) (1985), 536-552. https://doi.org/10.1016/0022-247X(85)90315-4
  • Bibi, R., Nosheen, A., Bano, S., Pecaric, J., Generalizations of the Jensen functional involving diamond integrals via Abel-Gontscharoff interpolation, J. Inequal. Appl., 2022 (2022), Article ID 15. https://doi.org/10.1186/s13660-021-02748-y
  • Bradanovic, S. I., More accurate majorization inequalities obtained via superquadraticity and convexity with application to entropies, Mediterr. J. Math., 18 (2021), Article ID 79. https://doi.org/10.1007/s00009-021-01708-6
  • Butt, S. I., Akdemir, A. O., Nasir, J., Jarad, F., Some Hermite-Jensen-Mercer like inequalities for convex functions through a certain generalized fractional integrals and related results, Miskolc Math. Notes, 21 (2020), 689-715. https://doi.org/10.18514/MMN.2020.3339
  • Butt, S. I., Yousaf, S., Ahmad, H., Nofal, T. A., Jensen–Mercer inequality and related results in the fractal sense with applications, Fractals, 30(1) (2021), Article ID 2240008. https://doi.org/10.1142/S0218348X22400084
  • Cloud, M. J., Drachman, B. C., Lebedev, L. P., Inequalities with Applications to Engineering, Springer: Cham Heidelberg New York Dordrecht London, 2014.https://doi.org/10.1007/978-3-319-05311-0
  • Deng, Y., Ullah, H., Adil Khan, M., Iqbal, S., Wu, S., Refinements of Jensen’s inequality via majorization results with applications in the information theory, J. Math., 2021 (2021), Article ID 1951799. https://doi.org/10.1155/2021/1951799
  • Dragomir, S. S., A new refinement of Jensen’s inequality in linear spaces with applications, Math. Comput. Modelling, 52(9) (2010), 1497-1505. https://doi.org/10.1016/j.mcm.2010.05.035
  • Dragomir, S. S., A refinement of Jensen’s inequality with applications for f-divergence measures, Taiwanese J. Math., 14 (2010), 153-164. https://doi.org/10.11650/twjm/1500405733
  • Dragomir, S. S., Nikodem, K., Jensen’s and Hermite-Hadamard’s type inequalities for lower and strongly convex functions on normed spaces, Bull. Iran. Math. Soc., 44 (2018), 1337-1349. https://doi.org/10.1007/s41980-018-0095-9
  • Erdem, Y., Ogunmez, H., Budak, H., Some generalized inequalities of Hermite-Hadamard type for strongly s-convex functions, New Trend Math. Sci., 5(3) (2017), 22-32. http://dx.doi.org/10.20852/ntmsci.2017.181
  • Erdem, Y., Ogunmez, H., Budak, H., On some Hermite-Hadamard type inequalities for strongly s-convex functions, New Trend Math. Sci., 5(3) (2017), 154-161. https://doi.org/10.20852/ntmsci.2017.192
  • Han, W., Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics, Math. Mech. Solids, 23 (2018), 279-293. https://doi.org/10.1177/1081286517713342
  • Horvath, L., Pecaric, D., Pecaric, J., Estimations of f-and Renyi divergences by using a cyclic refinement of the Jensen’s inequality, Bull. Malays. Math. Sci. Soc., 42(3) (2019), 933-946. https://doi.org/10.1007/s40840-017-0526-4
  • Iqbal, A., Adil Khan, M., Ullah, S., Chu, Y.-M., Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Spaces, 2020 (2020), Article ID 9845407. https://doi.org/10.1155/2020/9845407
  • Kashuri, A., Liko, R., Ali, M. A., Budak, H., New estimates of Gauss-Jacobi and trapezium type inequalities for strongly $(h_1, h_2)$-preinvex mappings via general fractional integrals, Int. J. Nonlinear Anal. Appl., 12(1) (2021), 979-996. https://doi.org/10.22075/IJNAA.2020.19718.2096
  • Khan, S., Adil Khan, M., Butt, S. I., Chu, Y.-M., A new bound for the Jensen gap pertaining twice differentiable functions with applications, Adv. Difference Equ., 2020 (2020), Article ID 333. https://doi.org/10.1186/s13662-020-02794-8
  • Khan, Z. A., Shah, K., Discrete fractional inequalities pertaining a fractional sum operator with some applications on time scales, J. Funct. Spaces, 2021 (2021), Article ID 8734535. https://doi.org/10.1155/2021/8734535
  • Khurshid, Y., Adil Khan, M., Chu, Y.-M., Conformable integral inequalities of the Hermite-Hadamard type in terms of GG- and GA-convexities, J. Funct. Spaces, 2019 (2019), Article ID 6926107. https://doi.org/10.1155/2019/6926107
  • Khurshid, Y., Adil Khan, M., Chu, Y.-M., Khan, Z. A., Hermite-Hadamard-Fejer inequalities for conformable fractional integrals via preinvex functions, J. Funct. Spaces, 2019 (2019), Article ID 3146210. https://doi.org/10.1155/2019/3146210
  • Lakshmikantham, V., Vatsala, A. S., Theory of Differential and Integral Inequalities with Initial Time Difference and Applications, Springer: Berlin, 1999. https://doi.org/10.1007/978-94-011-4577-0-12
  • Liao, J. G., Berg, A., Sharpening Jensen’s inequality, Amer. Statist., 4 (2018), 1-4. https://doi.org/10.1080/00031305.2017.1419145
  • Lin, Q., Jensen inequality for superlinear expectations, Stat. Probabil. Lett., 151 (2019), 79-83. https://doi.org/10.1016/j.spl.2019.03.006
  • Merentes, N., Nikodem, K., Remarks on strongly convex functions, Aequat. Math., 80 (2010), 193-199. https://doi.org/10.1007/s00010-010-0043-0
  • Moradi, H. R., Omidvar, M. E., Adil Khan, M., Nikodem, K., Around Jensen’s inequality for strongly convex functions, Aequat. Math., 92 (2018), 25–37. https://doi.org/10.1007/s00010-017-0496-5
  • Niezgoda, M., A Jensen-Sherman type inequality with a control map for G–invariant convex functions, Positivity, 25 (2021), 431-446. https://doi.org/10.1007/s11117-020-00769-3
  • Nikodem, K., On Strongly Convex Functions and Related Classes of Functions, Handbook of Functional Equations, Springer, New York, NY, USA, 2014, 365-405. https://doi.org/10.1007/978-1-4939-1246-9-16
  • Nikolova, L., Persson, L.-E., Varosanec, S., Continuous refinements of some Jensen-type inequalities via strong convexity with applications, J. Inequal. Appl., 2022 (2022), Article ID 63. https://doi.org/10.1186/s13660-022-02801-4
  • Rubab, F., Nabi, H. Khan, A. R., Generalization and refinements of Jensen inequality, J. Math. Anal., 12(5) (2021), 1-27. https://doi.org/10.54379/jma-2021-5-1
  • Sahoo, S. K., Tariq, M., Ahmad, H., Nasir, J., Aydi, H., Mukheimer, A., New Ostrowskitype fractional integral inequalities via generalized exponential-type convex functions and applications, Symmetry, 13(8) (2021), Article ID 1429. https://doi.org/10.3390/sym13081429
  • Song, Y.-Q., Adil Khan, M., Zaheer Ullah, S., Chu, Y.-M., Integral inequalities involving strongly convex functions, J. Funct. Spaces, 2018 (2018), Article ID 6595921. https://doi.org/10.1155/2018/6595921
  • Thompson, C. J., Inequality with applications in statistical mechanics, J. Math. Phy., 6 (1965), 1812-1813. https://doi.org/10.1063/1.1704727
  • Zaheer Ullah, S., Adil Khan, M., Khan, Z. A. H., Chu, Y.-M., Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Spaces, 2019 (2019), Article ID 9487823. https://doi.org/10.1155/2019/9487823
  • Zhongyi, Z., Farid, G., Mahreen, K., Inequalities for unified integral operators via strongly $(\alpha, h − m)$-convexity, J. Funct. Spaces, 2021 (2021), Article ID 6675826. https://doi.org/10.1155/2021/6675826
There are 45 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Asia K This is me 0000-0003-4012-5417

Shahid Khan 0000-0003-1966-3130

Publication Date December 29, 2023
Submission Date October 12, 2022
Acceptance Date April 6, 2023
Published in Issue Year 2023 Volume: 72 Issue: 4

Cite

APA K, A., & Khan, S. (2023). Demonstration of the strength of strong convexity via Jensen’s gap. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(4), 1019-1033. https://doi.org/10.31801/cfsuasmas.1186649
AMA K A, Khan S. Demonstration of the strength of strong convexity via Jensen’s gap. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2023;72(4):1019-1033. doi:10.31801/cfsuasmas.1186649
Chicago K, Asia, and Shahid Khan. “Demonstration of the Strength of Strong Convexity via Jensen’s Gap”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 4 (December 2023): 1019-33. https://doi.org/10.31801/cfsuasmas.1186649.
EndNote K A, Khan S (December 1, 2023) Demonstration of the strength of strong convexity via Jensen’s gap. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 4 1019–1033.
IEEE A. K and S. Khan, “Demonstration of the strength of strong convexity via Jensen’s gap”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 4, pp. 1019–1033, 2023, doi: 10.31801/cfsuasmas.1186649.
ISNAD K, Asia - Khan, Shahid. “Demonstration of the Strength of Strong Convexity via Jensen’s Gap”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/4 (December 2023), 1019-1033. https://doi.org/10.31801/cfsuasmas.1186649.
JAMA K A, Khan S. Demonstration of the strength of strong convexity via Jensen’s gap. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:1019–1033.
MLA K, Asia and Shahid Khan. “Demonstration of the Strength of Strong Convexity via Jensen’s Gap”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 4, 2023, pp. 1019-33, doi:10.31801/cfsuasmas.1186649.
Vancouver K A, Khan S. Demonstration of the strength of strong convexity via Jensen’s gap. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(4):1019-33.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.