Research Article
BibTex RIS Cite

Lyapunov-type inequalities for linear hyperbolic and elliptic equations on a rectangular domain

Year 2024, Volume: 73 Issue: 2, 529 - 537, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1309476

Abstract

In the case of oscillatory potential, we present some new Lyapunov-type inequalities for linear hyperbolic and elliptic equations on a rectangular domain in ${\mathbb R}^2$. No sign restriction is imposed on the potential function. As applications of the Lyapunov-type inequalities obtained, we give some estimations for disconjugacy of hyperbolic and elliptic Dirichlet boundary value problems.

References

  • Agarwal, R. P., Bohner, M., Özbekler, A., Lyapunov Inequalities and Applications, Springer, Switzerland, 2021. https://doi.org/10.1007/978-3-030-69029-8
  • Canada, A., Montero, J. A., Villegas, S., Lyapunov inequalities for partial differential equations, J. Funct. Anal., 237(1) (2006), 176-193. https://doi.org/10.1016/j.jfa.2005.12.011
  • Canada, A., Villegas, S., Lyapunov inequalities for Neumann boundary conditions at higher eigenvalues, J Eur Math Soc., 12 (2010), 163-178. https://ems.press/doi/10.4171/jems/193
  • Canada, A. , Villegas, S., Lyapunov inequalities for Partial differential equations at radial higher eigenvalues, Discrete Contin. Dyn. Syst., 33(1) (2013), 111-122. 10.3934/dcds.2013.33.111
  • Cheng, S. S., Lyapunov inequalities for differential and difference equations, Fasc. Math., 23 (1991), 25-41.
  • de Napoli P. L., Pinasco, J. P., Lyapunov inequality for monotone quasilinear operators, Differ Integ. Equ., 18(10) (2005), 1193-1200.
  • de Napoli P. L., Pinasco, J. P., Lyapunov-type inequalities for partial differential equations, J. Funct. Anal., 270(6) (2016), 1995-2018. https://doi.org/10.1016/j.jfa.2016.01.006
  • Hartman, P., Ordinary Differential Equations, Wiley, New York, 1964 and Birkhauser, Boston, 1982.
  • Jleli, M., Kirane, M., Samet, B., Lyapunov-type inequalities for fractional partial differential equations, Appl. Math. Lett., 66 (2017), 30-99. https://doi.org/10.1016/j.aml.2016.10.013
  • Jleli, M., Kirane, M., Samet, B., On Lyapunov-type inequalities for a certain class of partial differential equations, Appl. Anal., 99(1) (2020), 40-59. https://doi.org/10.1080/00036811.2018.1484909
  • Kumar, D., Tyagi, J., Lyapunov-type inequalities for singular elliptic partial differential equations, Math. Methods Appl. Sci., 44(7) (2021), 5593-5616. https://doi.org/10.1002/mma.7134
  • Lee, C., Yeh, C., Hong, C., Agarwal, R. P., Lyapunov and Wirtinger inequalities, Appl. Math. Lett., 17 (2004), 847-853. https://doi.org/10.1016/j.aml.2004.06.016
  • Liapunov, A. M., Probleme general de la stabilite du mouvement, (French Translation of a Russian paper dated 1893), Ann. Fac. Sci. Univ. Toulouse, 2 (1907), 27–247, Reprinted as Ann. Math. Studies, No. 17, Princeton, 1947. https://doi.org/10.1515/9781400882311
  • Sanchez, J., Vergara, V., A Lyapunov-type inequality for a Ψ-Laplacian operator, Nonlinear Anal., 74 (2011), 7071-7077. https://doi.org/10.1016/j.na.2011.07.027
  • Steglinski, R., Lyapunov-type inequalities for partial differential equations with p-Laplacian, Forum Math., 33(2) (2021), 465-476. https://doi.org/10.1515/forum-2020-0232
  • Tiryaki, A., Recent developments of Lyapunov-type inequalities, Advances in Dynam. Sys. Appl., 5(2) (2010), 231-248.
  • Wintner, A., On the nonexistence of conjugate points, Amer. J. Math., 73 (1951), 368-380. https://doi.org/10.2307/2372182
Year 2024, Volume: 73 Issue: 2, 529 - 537, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1309476

Abstract

References

  • Agarwal, R. P., Bohner, M., Özbekler, A., Lyapunov Inequalities and Applications, Springer, Switzerland, 2021. https://doi.org/10.1007/978-3-030-69029-8
  • Canada, A., Montero, J. A., Villegas, S., Lyapunov inequalities for partial differential equations, J. Funct. Anal., 237(1) (2006), 176-193. https://doi.org/10.1016/j.jfa.2005.12.011
  • Canada, A., Villegas, S., Lyapunov inequalities for Neumann boundary conditions at higher eigenvalues, J Eur Math Soc., 12 (2010), 163-178. https://ems.press/doi/10.4171/jems/193
  • Canada, A. , Villegas, S., Lyapunov inequalities for Partial differential equations at radial higher eigenvalues, Discrete Contin. Dyn. Syst., 33(1) (2013), 111-122. 10.3934/dcds.2013.33.111
  • Cheng, S. S., Lyapunov inequalities for differential and difference equations, Fasc. Math., 23 (1991), 25-41.
  • de Napoli P. L., Pinasco, J. P., Lyapunov inequality for monotone quasilinear operators, Differ Integ. Equ., 18(10) (2005), 1193-1200.
  • de Napoli P. L., Pinasco, J. P., Lyapunov-type inequalities for partial differential equations, J. Funct. Anal., 270(6) (2016), 1995-2018. https://doi.org/10.1016/j.jfa.2016.01.006
  • Hartman, P., Ordinary Differential Equations, Wiley, New York, 1964 and Birkhauser, Boston, 1982.
  • Jleli, M., Kirane, M., Samet, B., Lyapunov-type inequalities for fractional partial differential equations, Appl. Math. Lett., 66 (2017), 30-99. https://doi.org/10.1016/j.aml.2016.10.013
  • Jleli, M., Kirane, M., Samet, B., On Lyapunov-type inequalities for a certain class of partial differential equations, Appl. Anal., 99(1) (2020), 40-59. https://doi.org/10.1080/00036811.2018.1484909
  • Kumar, D., Tyagi, J., Lyapunov-type inequalities for singular elliptic partial differential equations, Math. Methods Appl. Sci., 44(7) (2021), 5593-5616. https://doi.org/10.1002/mma.7134
  • Lee, C., Yeh, C., Hong, C., Agarwal, R. P., Lyapunov and Wirtinger inequalities, Appl. Math. Lett., 17 (2004), 847-853. https://doi.org/10.1016/j.aml.2004.06.016
  • Liapunov, A. M., Probleme general de la stabilite du mouvement, (French Translation of a Russian paper dated 1893), Ann. Fac. Sci. Univ. Toulouse, 2 (1907), 27–247, Reprinted as Ann. Math. Studies, No. 17, Princeton, 1947. https://doi.org/10.1515/9781400882311
  • Sanchez, J., Vergara, V., A Lyapunov-type inequality for a Ψ-Laplacian operator, Nonlinear Anal., 74 (2011), 7071-7077. https://doi.org/10.1016/j.na.2011.07.027
  • Steglinski, R., Lyapunov-type inequalities for partial differential equations with p-Laplacian, Forum Math., 33(2) (2021), 465-476. https://doi.org/10.1515/forum-2020-0232
  • Tiryaki, A., Recent developments of Lyapunov-type inequalities, Advances in Dynam. Sys. Appl., 5(2) (2010), 231-248.
  • Wintner, A., On the nonexistence of conjugate points, Amer. J. Math., 73 (1951), 368-380. https://doi.org/10.2307/2372182
There are 17 citations in total.

Details

Primary Language English
Subjects Partial Differential Equations, Applied Mathematics (Other)
Journal Section Research Articles
Authors

Bülent Köroğlu 0000-0002-7841-8234

Abdullah Özbekler 0000-0001-5196-4078

Publication Date June 21, 2024
Submission Date June 4, 2023
Acceptance Date December 26, 2023
Published in Issue Year 2024 Volume: 73 Issue: 2

Cite

APA Köroğlu, B., & Özbekler, A. (2024). Lyapunov-type inequalities for linear hyperbolic and elliptic equations on a rectangular domain. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(2), 529-537. https://doi.org/10.31801/cfsuasmas.1309476
AMA Köroğlu B, Özbekler A. Lyapunov-type inequalities for linear hyperbolic and elliptic equations on a rectangular domain. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2024;73(2):529-537. doi:10.31801/cfsuasmas.1309476
Chicago Köroğlu, Bülent, and Abdullah Özbekler. “Lyapunov-Type Inequalities for Linear Hyperbolic and Elliptic Equations on a Rectangular Domain”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 2 (June 2024): 529-37. https://doi.org/10.31801/cfsuasmas.1309476.
EndNote Köroğlu B, Özbekler A (June 1, 2024) Lyapunov-type inequalities for linear hyperbolic and elliptic equations on a rectangular domain. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 2 529–537.
IEEE B. Köroğlu and A. Özbekler, “Lyapunov-type inequalities for linear hyperbolic and elliptic equations on a rectangular domain”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 2, pp. 529–537, 2024, doi: 10.31801/cfsuasmas.1309476.
ISNAD Köroğlu, Bülent - Özbekler, Abdullah. “Lyapunov-Type Inequalities for Linear Hyperbolic and Elliptic Equations on a Rectangular Domain”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/2 (June 2024), 529-537. https://doi.org/10.31801/cfsuasmas.1309476.
JAMA Köroğlu B, Özbekler A. Lyapunov-type inequalities for linear hyperbolic and elliptic equations on a rectangular domain. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:529–537.
MLA Köroğlu, Bülent and Abdullah Özbekler. “Lyapunov-Type Inequalities for Linear Hyperbolic and Elliptic Equations on a Rectangular Domain”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 2, 2024, pp. 529-37, doi:10.31801/cfsuasmas.1309476.
Vancouver Köroğlu B, Özbekler A. Lyapunov-type inequalities for linear hyperbolic and elliptic equations on a rectangular domain. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(2):529-37.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.