Research Article
BibTex RIS Cite

Separation, compactness, and sobriety in the category of constant limit spaces

Year 2024, Volume: 73 Issue: 2, 319 - 335, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1336733

Abstract

The objective of this article is to characterize each of compact, sober, and $T_{i}$ for $i=0,1,2$ constant limit spaces as well as to investigate the relationships between them. Finally, we compare our results in some topological categories.

References

  • Adamek, J., Herrlich. H., Strecker, G. E., Abstract and Concrete Categories, Pure and Applied Mathematics, John Wiley & Sons, New York, 1990.
  • Baran, M., Separation properties, Indian Journal Pure Applied Mathematics, 23 (1991), 333–341.
  • Baran, M., Stack and filters, Turkish Journal of Mathematics, 16 (1992), 95–108.
  • Baran M., The notion of closedness in topological categories. Commentationes Mathematicae Universitatis Carolinae, 34 (2) (1993), 383–395.
  • Baran, M., Separation properties in categories of constant convergence spaces, Turkish Journal of Mathematics, 18 (1994), 238–248.
  • Baran, M., Altındiş, H., $T_{2}$–objects in topological categories, Acta Mathematica Hungarica 71 (1996), 41–48.
  • Baran, M., A notion of compactness in topological categories, Publicationes Mathematicae Debrecen, 50 (1997), 221–234.
  • Baran M., Completely regular objects and normal objects in topological categories. Acta Mathematica Hungarica, 80 (1998), 211–224.
  • Baran, M., Closure operators in convergence spaces, Acta Mathematica Hungarica, 87 (2000), 33–45. https://doi.org/10.1023/a:1006768916033
  • Baran, M., Kula, M., A note on separation and compactness in categories of convergence spaces, Applied General Topology, 4 (1) (2003), 1–13. https://doi.org/10.4995/agt.2003.2005
  • Baran, M., $PreT_{2}$ objects in topological category, Applied Category Structures, 17 (2009), 591–602. https://doi.org/10.1007/s10485-008-9161-4
  • Baran, M., Abughalwa, H., Sober spaces, Turkish Journal of Mathematics, 46 (2022), 299–310. https://doi.org/10.3906/mat-2109-95
  • Baran, M., Separation, connectedness, and disconnectedness, Turkish Journal of Mathematics, 47 (1) (2023), 279–295. https://doi.org/10.55730/1300-0098.3360
  • Baran, M., Stone spaces I, Filomat, 38 (2024).
  • Baran, T. M., Local $T_{2}$ extended pseudo-quasi-semi metric spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68 (2) (2019), 2117–2127. https://doi.org/10.31801/cfsuasmas.497701
  • Baran, T. M., Closedness, separation and connectedness in pseudo-quasi-semi metric spaces, Filomat, 34 (14) (2020), 4757–4766. https://doi.org/10.2298/FIL2014757B
  • Binz, E., Keller, H. H., Kunktionenraume in der Kategorie der Limesraume, no. 383 in Sero AI. Ann. Acad. Sci. Fennicae, 1966.
  • Dieudonne, J. A., Grothendieck A. Elements de Geometrie Algebrique, Springer, New York, 1971.
  • Dikranjan, D., Tholen, W., Categorical Structure of Closure Operators, Kluwer Academic Publishers, Dordrecht, 1995.
  • Erciyes, A., Baran, T. M., Qasim, M., Closure operators in constant filter convergence spaces, Konuralp Journal of Mathematics, 8 (1) (2020), 185–191.
  • Erciyes, A., Baran, T. M., $T_{4}$, Urysohn’s lemma, and Tietze extension theorem for constant filter convergence spaces, Turkish Journal of Mathematics, 45 (2021), 843–855. https://doi.org/10.3906/mat-2012-101
  • Frölicher, A., Bucher, W., Calculus in Vector Spaces without Norm, Lecture Notes in Mathematics, 1966.
  • Kula, M., Baran, T. M., Separation axioms, Urysohn’s lemma and Tietze extention theorem for extended pseudo-quasi-semi metric spaces, Filomat, 36 (2) (2022), 703–713. https://doi.org/10.2298/FIL2202703B
  • Ozkan, S., Kula, M., Kula, S., Baran, T. M., Closure operators, irreducibility, Urysohn’s lemma, and Tietze extension theorem for proximity spaces, Turkish Journal of Mathematics, 47 (1) (2023), 870–882. https://doi.org/10.55730/1300-0098.3398
  • Qasim, M., Baran, M., $T_{1}$ approach spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68 (1) (2019), 784–800. https://doi.org/10.31801/cfsuasmas.478632
  • Qasim, M., Baran, M., Abughalwa, H., Closure operators in convergence approach spaces, Turkish Journal of Mathematics, 45 (2021), 139–152. https://doi.org/10.3906/mat-2008-6
Year 2024, Volume: 73 Issue: 2, 319 - 335, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1336733

Abstract

References

  • Adamek, J., Herrlich. H., Strecker, G. E., Abstract and Concrete Categories, Pure and Applied Mathematics, John Wiley & Sons, New York, 1990.
  • Baran, M., Separation properties, Indian Journal Pure Applied Mathematics, 23 (1991), 333–341.
  • Baran, M., Stack and filters, Turkish Journal of Mathematics, 16 (1992), 95–108.
  • Baran M., The notion of closedness in topological categories. Commentationes Mathematicae Universitatis Carolinae, 34 (2) (1993), 383–395.
  • Baran, M., Separation properties in categories of constant convergence spaces, Turkish Journal of Mathematics, 18 (1994), 238–248.
  • Baran, M., Altındiş, H., $T_{2}$–objects in topological categories, Acta Mathematica Hungarica 71 (1996), 41–48.
  • Baran, M., A notion of compactness in topological categories, Publicationes Mathematicae Debrecen, 50 (1997), 221–234.
  • Baran M., Completely regular objects and normal objects in topological categories. Acta Mathematica Hungarica, 80 (1998), 211–224.
  • Baran, M., Closure operators in convergence spaces, Acta Mathematica Hungarica, 87 (2000), 33–45. https://doi.org/10.1023/a:1006768916033
  • Baran, M., Kula, M., A note on separation and compactness in categories of convergence spaces, Applied General Topology, 4 (1) (2003), 1–13. https://doi.org/10.4995/agt.2003.2005
  • Baran, M., $PreT_{2}$ objects in topological category, Applied Category Structures, 17 (2009), 591–602. https://doi.org/10.1007/s10485-008-9161-4
  • Baran, M., Abughalwa, H., Sober spaces, Turkish Journal of Mathematics, 46 (2022), 299–310. https://doi.org/10.3906/mat-2109-95
  • Baran, M., Separation, connectedness, and disconnectedness, Turkish Journal of Mathematics, 47 (1) (2023), 279–295. https://doi.org/10.55730/1300-0098.3360
  • Baran, M., Stone spaces I, Filomat, 38 (2024).
  • Baran, T. M., Local $T_{2}$ extended pseudo-quasi-semi metric spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68 (2) (2019), 2117–2127. https://doi.org/10.31801/cfsuasmas.497701
  • Baran, T. M., Closedness, separation and connectedness in pseudo-quasi-semi metric spaces, Filomat, 34 (14) (2020), 4757–4766. https://doi.org/10.2298/FIL2014757B
  • Binz, E., Keller, H. H., Kunktionenraume in der Kategorie der Limesraume, no. 383 in Sero AI. Ann. Acad. Sci. Fennicae, 1966.
  • Dieudonne, J. A., Grothendieck A. Elements de Geometrie Algebrique, Springer, New York, 1971.
  • Dikranjan, D., Tholen, W., Categorical Structure of Closure Operators, Kluwer Academic Publishers, Dordrecht, 1995.
  • Erciyes, A., Baran, T. M., Qasim, M., Closure operators in constant filter convergence spaces, Konuralp Journal of Mathematics, 8 (1) (2020), 185–191.
  • Erciyes, A., Baran, T. M., $T_{4}$, Urysohn’s lemma, and Tietze extension theorem for constant filter convergence spaces, Turkish Journal of Mathematics, 45 (2021), 843–855. https://doi.org/10.3906/mat-2012-101
  • Frölicher, A., Bucher, W., Calculus in Vector Spaces without Norm, Lecture Notes in Mathematics, 1966.
  • Kula, M., Baran, T. M., Separation axioms, Urysohn’s lemma and Tietze extention theorem for extended pseudo-quasi-semi metric spaces, Filomat, 36 (2) (2022), 703–713. https://doi.org/10.2298/FIL2202703B
  • Ozkan, S., Kula, M., Kula, S., Baran, T. M., Closure operators, irreducibility, Urysohn’s lemma, and Tietze extension theorem for proximity spaces, Turkish Journal of Mathematics, 47 (1) (2023), 870–882. https://doi.org/10.55730/1300-0098.3398
  • Qasim, M., Baran, M., $T_{1}$ approach spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68 (1) (2019), 784–800. https://doi.org/10.31801/cfsuasmas.478632
  • Qasim, M., Baran, M., Abughalwa, H., Closure operators in convergence approach spaces, Turkish Journal of Mathematics, 45 (2021), 139–152. https://doi.org/10.3906/mat-2008-6
There are 26 citations in total.

Details

Primary Language English
Subjects Topology
Journal Section Research Articles
Authors

Ayhan Erciyes 0000-0002-0942-5182

Muhammad Qasım 0000-0001-9485-8072

İsmail Alper Güvey 0009-0008-6165-643X

Publication Date June 21, 2024
Submission Date August 2, 2023
Acceptance Date November 27, 2023
Published in Issue Year 2024 Volume: 73 Issue: 2

Cite

APA Erciyes, A., Qasım, M., & Güvey, İ. A. (2024). Separation, compactness, and sobriety in the category of constant limit spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(2), 319-335. https://doi.org/10.31801/cfsuasmas.1336733
AMA Erciyes A, Qasım M, Güvey İA. Separation, compactness, and sobriety in the category of constant limit spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2024;73(2):319-335. doi:10.31801/cfsuasmas.1336733
Chicago Erciyes, Ayhan, Muhammad Qasım, and İsmail Alper Güvey. “Separation, Compactness, and Sobriety in the Category of Constant Limit Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 2 (June 2024): 319-35. https://doi.org/10.31801/cfsuasmas.1336733.
EndNote Erciyes A, Qasım M, Güvey İA (June 1, 2024) Separation, compactness, and sobriety in the category of constant limit spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 2 319–335.
IEEE A. Erciyes, M. Qasım, and İ. A. Güvey, “Separation, compactness, and sobriety in the category of constant limit spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 2, pp. 319–335, 2024, doi: 10.31801/cfsuasmas.1336733.
ISNAD Erciyes, Ayhan et al. “Separation, Compactness, and Sobriety in the Category of Constant Limit Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/2 (June 2024), 319-335. https://doi.org/10.31801/cfsuasmas.1336733.
JAMA Erciyes A, Qasım M, Güvey İA. Separation, compactness, and sobriety in the category of constant limit spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:319–335.
MLA Erciyes, Ayhan et al. “Separation, Compactness, and Sobriety in the Category of Constant Limit Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 2, 2024, pp. 319-35, doi:10.31801/cfsuasmas.1336733.
Vancouver Erciyes A, Qasım M, Güvey İA. Separation, compactness, and sobriety in the category of constant limit spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(2):319-35.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.