Research Article
BibTex RIS Cite

Numerical radius and p-Schatten norm inequalities for power series of operators in Hilbert spaces

Year 2024, Volume: 73 Issue: 2, 365 - 390, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1341138

Abstract

Let $H$ be a complex Hilbert space. Assume that the power series with complex coefficients $f(z):=\sum\nolimits_{k=0}^{\infty }a_{k}z^{k}$ is convergent on the open disk $D(0,R),~f_{a}(z):=\sum\nolimits_{k=0}^{\infty}\left\vert a_{k}\right\vert z^{k}$ that has the same radius of convergence $R$ and $A,~B,~C\in B(H)$ with $\left\Vert A\right\Vert $ <$R$, then we have the
following Schwarz type inequality
$
\left\vert \left\langle C^{\ast }Af(A)Bx,y\right\rangle \right\vert \leq
f_{a}(\left\Vert A\right\Vert )\left\langle \left\vert \left\vert
A\right\vert ^{\alpha }B\right\vert ^{2}x,x\right\rangle ^{1/2}\left\langle
\left\vert \left\vert A^{\ast }\right\vert ^{1-\alpha }C\right\vert
^{2}y,y\right\rangle ^{1/2}
$
for $\alpha \in \lbrack 0,1]$ and $x,y\in H.$ Some natural applications for numerical radius and p-Schatten norm are also provided.

References

  • Bhunia, P., Dragomir, S. S., Moslehian, M. S., Paul, K., Lectures on Numerical Radius Inequalities, Springer Cham, 2022. https://doi.org/10.1007/978-3-031-13670-2
  • Buzano, M. L., Generalizzazione della diseguaglianza di Cauchy-Schwarz. (Italian), Rend. Sem. Mat. Univ. e Politech. Torino, 31(1971/73), (1974), 405–409.
  • Dragomir, S. S., Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, Springer Briefs in Mathematics, 2013. https://doi.org/10.1007/978-3-319-01448-7.
  • Dragomir, S. S., Trace inequalities for operators in Hilbert spaces: a survey of recent results, Aust. J. Math. Anal. Appl., 19(1) (2022), 202 pp.
  • El-Haddad, M., Kittaneh, F., Numerical radius inequalities for Hilbert space operators. II, Studia Math., 182(2) (2007), 133-140. https://doi.org/10.4064/sm182-2-3
  • Kittaneh, F., Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci., 24(2) (1988), 283–293. https://doi.org/10.2977/prims/1195175202
  • Kittaneh, F., A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158(1) (2003), 11-17. https://doi.org/10.4064/sm158-1-2
  • Kittaneh, F., Numerical radius inequalities for Hilbert space operators, Studia Math., 168(1) (2005), 73-80. https://doi.org/10.4064/sm168-1-5
  • McCarthy, C. A., Cp, Israel J. Math., 5 (1967), 249–271. https://doi.org/10.1007/bf02771613
  • Simon, B., Trace Ideals and Their Applications, Cambridge University Press, Cambridge, 1979.
  • Ringrose, J. R., Compact Non-self-adjoint Operators, Van Nostrand Reinhold, New York, 1971.
  • Zagrebnov, V. A., Gibbs Semigroups, Operator Theory: Advances and Applications, Volume 273, Birkh¨auser, 2019. https://doi.org/10.1007/978-3-030-18877-1
Year 2024, Volume: 73 Issue: 2, 365 - 390, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1341138

Abstract

References

  • Bhunia, P., Dragomir, S. S., Moslehian, M. S., Paul, K., Lectures on Numerical Radius Inequalities, Springer Cham, 2022. https://doi.org/10.1007/978-3-031-13670-2
  • Buzano, M. L., Generalizzazione della diseguaglianza di Cauchy-Schwarz. (Italian), Rend. Sem. Mat. Univ. e Politech. Torino, 31(1971/73), (1974), 405–409.
  • Dragomir, S. S., Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, Springer Briefs in Mathematics, 2013. https://doi.org/10.1007/978-3-319-01448-7.
  • Dragomir, S. S., Trace inequalities for operators in Hilbert spaces: a survey of recent results, Aust. J. Math. Anal. Appl., 19(1) (2022), 202 pp.
  • El-Haddad, M., Kittaneh, F., Numerical radius inequalities for Hilbert space operators. II, Studia Math., 182(2) (2007), 133-140. https://doi.org/10.4064/sm182-2-3
  • Kittaneh, F., Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci., 24(2) (1988), 283–293. https://doi.org/10.2977/prims/1195175202
  • Kittaneh, F., A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158(1) (2003), 11-17. https://doi.org/10.4064/sm158-1-2
  • Kittaneh, F., Numerical radius inequalities for Hilbert space operators, Studia Math., 168(1) (2005), 73-80. https://doi.org/10.4064/sm168-1-5
  • McCarthy, C. A., Cp, Israel J. Math., 5 (1967), 249–271. https://doi.org/10.1007/bf02771613
  • Simon, B., Trace Ideals and Their Applications, Cambridge University Press, Cambridge, 1979.
  • Ringrose, J. R., Compact Non-self-adjoint Operators, Van Nostrand Reinhold, New York, 1971.
  • Zagrebnov, V. A., Gibbs Semigroups, Operator Theory: Advances and Applications, Volume 273, Birkh¨auser, 2019. https://doi.org/10.1007/978-3-030-18877-1
There are 12 citations in total.

Details

Primary Language English
Subjects Complex Systems in Mathematics, Approximation Theory and Asymptotic Methods
Journal Section Research Articles
Authors

Sever Dragomır 0000-0003-2902-6805

Publication Date June 21, 2024
Submission Date August 11, 2023
Acceptance Date February 25, 2024
Published in Issue Year 2024 Volume: 73 Issue: 2

Cite

APA Dragomır, S. (2024). Numerical radius and p-Schatten norm inequalities for power series of operators in Hilbert spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(2), 365-390. https://doi.org/10.31801/cfsuasmas.1341138
AMA Dragomır S. Numerical radius and p-Schatten norm inequalities for power series of operators in Hilbert spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2024;73(2):365-390. doi:10.31801/cfsuasmas.1341138
Chicago Dragomır, Sever. “Numerical Radius and P-Schatten Norm Inequalities for Power Series of Operators in Hilbert Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 2 (June 2024): 365-90. https://doi.org/10.31801/cfsuasmas.1341138.
EndNote Dragomır S (June 1, 2024) Numerical radius and p-Schatten norm inequalities for power series of operators in Hilbert spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 2 365–390.
IEEE S. Dragomır, “Numerical radius and p-Schatten norm inequalities for power series of operators in Hilbert spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 2, pp. 365–390, 2024, doi: 10.31801/cfsuasmas.1341138.
ISNAD Dragomır, Sever. “Numerical Radius and P-Schatten Norm Inequalities for Power Series of Operators in Hilbert Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/2 (June 2024), 365-390. https://doi.org/10.31801/cfsuasmas.1341138.
JAMA Dragomır S. Numerical radius and p-Schatten norm inequalities for power series of operators in Hilbert spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:365–390.
MLA Dragomır, Sever. “Numerical Radius and P-Schatten Norm Inequalities for Power Series of Operators in Hilbert Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 2, 2024, pp. 365-90, doi:10.31801/cfsuasmas.1341138.
Vancouver Dragomır S. Numerical radius and p-Schatten norm inequalities for power series of operators in Hilbert spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(2):365-90.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.