Research Article
BibTex RIS Cite

Complex deformable calculus

Year 2024, Volume: 73 Issue: 2, 486 - 495, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1377811

Abstract

In this paper, we give a new complex deformable derivative and integral of order λ which coincides with the classical derivative and integral for the special values of the parameters. We examine the basic properties of this derivative and integral. We also investigate the basic concepts of complex analysis for the λ-complex deformable derivative. Finally, we give some applications.

References

  • Ahlfors, L. V., Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, Volume 177, Mcgraw-Hill, Newyork, 1953.
  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002
  • Leibniz, G., Letter From Hanover, Germany to Johann g.f.a L’hospital, September 30, 1695, Leibniz Mathematische Schriften, Olms-Verlag, Hildeshein, Germany, 1965.
  • Miller, K.S., An Introduction to the Fractional Calculus and Fractional Differential Equations, J. Wiley and Sons, New York, 1993.
  • Oldham, K., Spanier, J., The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, Elsevier, USA, 1974. https://doi.org/10.1016/s0076-5392(09)x6012-1
  • Podlubny, I., Chechkin, A., Skovranek, T., Chen, Y., Jara, B. M. V., Matrix approach to discrete fractional calculus ii: partial fractional differential equations. Journal of Computational Physics, 228 (2009), 3137–3153. https://doi.org/10.1016/j.jcp.2009.01.014
  • Zill, D., Shanahan, P., A First Course in Complex Analysis With Applications, Jones and Bartlett Learning, 2009.
  • Zulfeqarr, F., Ujlayan, A., Ahuja, P., A new fractional derivative and its fractional integral with some applications. arXiv preprint arXiv:1705.00962 (2017), 1–11. https://doi.org/10.48550/arXiv.1705.00962
Year 2024, Volume: 73 Issue: 2, 486 - 495, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1377811

Abstract

References

  • Ahlfors, L. V., Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, Volume 177, Mcgraw-Hill, Newyork, 1953.
  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002
  • Leibniz, G., Letter From Hanover, Germany to Johann g.f.a L’hospital, September 30, 1695, Leibniz Mathematische Schriften, Olms-Verlag, Hildeshein, Germany, 1965.
  • Miller, K.S., An Introduction to the Fractional Calculus and Fractional Differential Equations, J. Wiley and Sons, New York, 1993.
  • Oldham, K., Spanier, J., The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, Elsevier, USA, 1974. https://doi.org/10.1016/s0076-5392(09)x6012-1
  • Podlubny, I., Chechkin, A., Skovranek, T., Chen, Y., Jara, B. M. V., Matrix approach to discrete fractional calculus ii: partial fractional differential equations. Journal of Computational Physics, 228 (2009), 3137–3153. https://doi.org/10.1016/j.jcp.2009.01.014
  • Zill, D., Shanahan, P., A First Course in Complex Analysis With Applications, Jones and Bartlett Learning, 2009.
  • Zulfeqarr, F., Ujlayan, A., Ahuja, P., A new fractional derivative and its fractional integral with some applications. arXiv preprint arXiv:1705.00962 (2017), 1–11. https://doi.org/10.48550/arXiv.1705.00962
There are 8 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Research Articles
Authors

Serkan Çakmak 0000-0003-0368-7672

Publication Date June 21, 2024
Submission Date October 18, 2023
Acceptance Date March 18, 2024
Published in Issue Year 2024 Volume: 73 Issue: 2

Cite

APA Çakmak, S. (2024). Complex deformable calculus. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(2), 486-495. https://doi.org/10.31801/cfsuasmas.1377811
AMA Çakmak S. Complex deformable calculus. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2024;73(2):486-495. doi:10.31801/cfsuasmas.1377811
Chicago Çakmak, Serkan. “Complex Deformable Calculus”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 2 (June 2024): 486-95. https://doi.org/10.31801/cfsuasmas.1377811.
EndNote Çakmak S (June 1, 2024) Complex deformable calculus. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 2 486–495.
IEEE S. Çakmak, “Complex deformable calculus”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 2, pp. 486–495, 2024, doi: 10.31801/cfsuasmas.1377811.
ISNAD Çakmak, Serkan. “Complex Deformable Calculus”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/2 (June 2024), 486-495. https://doi.org/10.31801/cfsuasmas.1377811.
JAMA Çakmak S. Complex deformable calculus. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:486–495.
MLA Çakmak, Serkan. “Complex Deformable Calculus”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 2, 2024, pp. 486-95, doi:10.31801/cfsuasmas.1377811.
Vancouver Çakmak S. Complex deformable calculus. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(2):486-95.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.